Fatty Acid Profiling of Bali and Wagyu Cattle using Principal Component Analysis

https://doi.org/10.21059/buletinpeternak.v48i1.86454

Dairoh Dairoh(1), Sutikno Sutikno(2), Andi Baso Lompengeng Ishak(3), Rudy Priyanto(4), Cece Sumantri(5), Mokhamad Fakhrul Ulum(6), Jakaria Jakaria(7*)

(1) Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor, 16680
(2) Indonesian Agency for Agricultural Instrument Standardization, Ministry of Agriculture
(3) Indonesian Agency for Agricultural Instrument Standardization, Ministry of Agriculture
(4) Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680
(5) Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680
(6) Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680
(7) Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680
(*) Corresponding Author

Abstract


This study aimed to compare the fatty acid profiles of Bali cattle and Wagyu cattle. A total of 50 beef was used in this study, consisting of 44 Bali cattle from Kupang, NTT, and 6 samples of Wagyu cattle from supermarkets. The fatty acid profiles identified are saturated and unsaturated (MUFA and PUFA). The fatty acid analysis used is the Gas Chromatography (GC) method. Descriptive analysis was used to examine data on the fatty acid profile, and T-test analyzed fatty acid composition differences between Bali and Wagyu beef. Differences in fatty acid compositions have been reported based on breeds. The Bali beef had significantly (p<0.05) higher saturated fatty acid than Wagyu. Several fatty acids of meat from Bali cattle were significantly different (p<0.05) from Wagyu, except for myristoleic (C14:0) and palmitoleic acids (C16:0) did not show significant differences (p>0.05). The principal component analysis (PCA) results showed that the first principal component was UFA, MUFA: SFA ratio, oleic acid, omega-9, MUFA, and palmitic acid. In contrast, the second principal component was myristoleic acid, linolenic acid, omega-3, PUFA: SFA ratio, PUFA, omega-6, linoleic acid, stearic acid, SFA, and palmitoleic acid. The study's findings revealed that Bali beef had a much more saturated fatty acid composition of Bali beef was higher than Wagyu beef. This result suggests that Wagyu cattle have a more favorable fatty acid profile, which benefits health.


Keywords


Bali cattle; Fatty acid; Principal component analysis; Wagyu cattle

Full Text:

PDF PDF. Dairoh


References

AOAC. 2012. Officials Methods of Analysis. 19th ed. Association of Official Analytical Chemists, Arlington.

Baer, D. J., T. T. Judd, B. A. Clevidence, and R. P. Tracy. 2004. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am. J. Clin. Nutr. 79: 969-973.

Bain, A., D. A. Astuti, S. Suharti, C. Arman, and K. G. Wiryawan. 2016. Performance, nutrient digestibility, and meat quality of Bali cattle fed a ration supplemented with soybean oil, calcium soap and cashew fruit flour. Med. Pet. 39: 180-188.

Bessa, R. J., S. P. Alves, J. Santos-Silva, and F. Santos-Silva. 2017. Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs. Anim. 11: 1162-1170.

Bressan, M. C., L. V. Rossato, E. C. Rodrigues, S. P. Alves, R. J. Bessa, E. M. Ramos, and L. T. Gama. 2011. Genotype x environment interactions for fatty acid profiles in Bos indicus and Bos taurus finished on pasture or grain. J. Anim. Sci. 89: 221-232.

Burillo, E., R. Mateo-Gallego, A. Cenarro, S. Fiddyment, A. M. Bea, I. Jorge, J. Vázquez, and F. Civeira. 2012. Beneficial effects of omega-3 fatty acids in the proteome of high-density lipoprotein proteome. Lipids. Health. Dis. 11: 116.

Calder, P. C. 2015. Functional roles of fatty acids and their effects on human health. J. Parent. Ent. Nut. 39: 18S-32S.

Calder, P. C. 2016. Omega-3 fatty acids and inflammatory processes: from molecules to man.Biochem. Soc. Trans. 45: 1105-1115.

Calder, P. C. 2017. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem. Soc. Trans. 45: 1105-1115.

Colussi, G., C. Catena, M. Novello, N. Bertin, and L. A. Sechi. 2017. Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: relevance for cardiovascular outcomes. Nutr. Metab. Cardiovasc. Dis. 27: 191–200.

Daley, C. A., A. Amber, P. S. Doyle, G. A. Nader, and S. Larson. 2010. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 9: 10.

Fiorentini, G., M. O. Santana, J. D. Messana, A. L. S. Valente, C. J. Harter, C. H. S. Rabelo, R. P. Barbero, D. P. D. Lanna, R. A. Reis, and T. T. Berchiell. 2018. Effect of lipid sources on the fatty acid profile of meat from pasture-and feedlot-finished Nellore bulls. Lives. Sci. 211: 51-60.

Gasperz, V. 1998. Teknik Analisis dalam Penelitian Percobaan. Penerbit Tarsito, Bandung.

Giaretta, E., A. L. Mordenti, G. Canestrari, N. Brogna, A. Palmonari, and A. Formigoni. 2018. Assessment of muscle longissimus thoracis et lumborum marbling by image analysis and the relationship between meet quality parameters. Plos One. 13: 1-12.

Hardjosubroto, W. 1998. Aplikasi Pemuliabiakan di Lapangan. Gramedia Widiasarana Indonesia, Jakarta.

Hunter, J. E., J. Zhang, and P. M. Kris-Etherton. 2010. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr. 91: 46-63.

Micha, R., G. Michas, and D. Mozaffarian. 2012. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes – An updated review of the evidence. Current Atherosclerosis Reports. 14: 515-524.

Missio, R. L., J. Restle, A. K. Freitas, M. E. Lage, P. S. Pacheo, U. O. Bileg, and J. T. Padua. 2017. Age castration of Nellore males on profile of fatty acids of meat. Semina: Ciências Agrárias, Londrina. 38: 3739-3748.

Mozaffarian, D. and J. H. Wu. 2011. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. American. Coll. Card. J. 58: 2047-2067.

Nogoy, K. M. C., B. Sun, S. Shin, Y. Lee, X. Z. Li, S. H. Choi, and S. Prak. 2022. Fatty Acid Composition of Grain- and Grass-Fed Beef and Their Nutritional Value and Health Implication. Food. Sci. Anim. Resour. 42: 18-33.

Patterson, E., R. Wall, G. F. Fitzgerald, R. P. Ross, and C. Stanton. 2012. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012: 1-16.

Pećina, M. and A. Ivanković. 2021. Effect of FASN, SCD, and GH genes on carcass fatness and fatty acid composition of intramuscular lipids in F1 Holstein × beef breeds. Agric. 13: 571.

Rossato, L. V., M. C. Bressan, E. C. Rodrigues, L. T. Gama, R. J. B. Bessa, and S. P. A. Alves. 2010. Parâmetros físico-químicos e perfil de ácidos graxos da carne de bovinos Angus e Nelore terminados em pastagem. R. Bras. Zootec. 39: 1127–1134.

Ruxton, C. H. S., S. C. Reed, M. J. A. Simpson, and K. J. Millington. 2004. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J. Hum. Nut. Diet. 17: 449-459.

Salamena, F. J. and J. Papilaja. 2010. Characterization and genetic relationships analysis of buffalo population in MOA island of South-East West Maluku regency of Maluku Province. J. Indonesian Trop. Anim. Agric. 35: 75-82.

Sakowski, T., G. Grodkowski, M. Gołebiewski, J. Slósarz, P. Kostusiak, P. Solarczyk, and K. Puppel. 2022. Genetic and environmental determinants of beef quality-a review. Front. Vet. Sci. 24: 1-8.

Santana, E. O. C., R. R. Silva, J. I. Simionato, G. T. Junio, T. O. J. Lins, G. D. da Costa, B. M. A. C. Mesquita, H. D. R. Alba, and G. G. P. Calvarho. 2023. Sex effect on the fatty acid profile and chemical composition of meat from beef cattle fed a whole shelled corn diet. Arch. Anim. Breed. 66: 51-60.

Scollan, N. D., D. Dannenberger, K. Nuernberg, I. Richardson, S. Mac Kintosh, J. F. Hocquette, and A. P. Moloney. 2014. Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat. Sci. 97: 384–394.

Simopoulos, A. P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharma. 56: 365-379.

Simopoulos, A. P. 2016. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutr. 8: 128.

Tarino, P. W., Q. Sun, F. B. Hu, and R. M. Krauss. 2010. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 91: 535-46.

Vargas-Bello-Pérez, E., N. Wrage, K. Gebauer, T. Von, M. Mielenz, A. Schröder, and G. Jahreis. 2018. Influence of different dietary levels of n-6/n-3 polyunsaturated fatty acids on the performance and fatty acid composition in muscle and subcutaneous fat of beef cattle. Anim. Feed. Sci. Tech. 235: 1-12.

Williamson, C. S., R. K. Foster, S. A. Stanner, and J. L. Buttriss. 2005. Red meat in the diet. Nutr. Bull. 30: 323–355.

Wood, J. D., M. Enser, A. V. Fisher, G. R. Nute, P. R. Sheard, R. I. Richardson, S. I. Hughes, and F. M. Whittington. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat. Sci. 78: 343–358.



DOI: https://doi.org/10.21059/buletinpeternak.v48i1.86454

Article Metrics

Abstract views : 801 | views : 402 | views : 333

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.