Morphological Characteristics of Gamma-Irradiated Desmanthus virgatus Mutants Adapted to High Salinity Conditions

https://doi.org/10.21059/buletinpeternak.v48i4.94141

Jidan Ramadani(1), Iwan Prihantoro(2*), Panca Dewi MHKS(3)

(1) Department of Nutrition and Feed Science Faculty of Animal Science, IPB University, Bogor, 16689
(2) Department of Nutrition and Feed Science Faculty of Animal Science, IPB University, Bogor, 16689
(3) Department of Nutrition and Feed Science Faculty of Animal Science, IPB University, Bogor, 16689
(*) Corresponding Author

Abstract


Gamma-ray irradiation can induce plant mutations, resulting in stable genetic changes that persist in future generations. This study aims to assess the morphological characteristics of the potential mutant of Hedge Lucerne (Desmanthus virgatus) that has developed adaptation to high salinity conditions as a result of irradiation using gamma-ray. A total of 36 candidate mutants first generation (M1) of D. virgatus were used in this study, and they had developed adaptation to high salinity conditions (8.4 dS/m) and were observed 64 wk after planting. The collected data underwent a descriptive statistical analysis and succeeded by applying the Shapiro-Wilk test to assess the normality of the data distribution. A concentration index greater than one (>1.00) signifies a high value of the plant’s morphological characteristic. All levels of gamma irradiation groups produced an excellent survival response in the mutant candidate. The high diversity in morphological characteristics was reflected in the number of compound leaves, the width of compound leaves, and the number of leaves per pinnae, flowers, and pods. The dominant color of the lower leaves was 7.5 Green Yellow (5/6), and the middle leaves were 7.5 Green Yellow (5/6), while the dominant color of the upper leaves was 7.5 Green Yellow (6/8). The mutant candidate of D. virgatus exhibited the best characteristics, as determined by the concentration index, were those subjected to 200 Gray and 300 Gray irradiation. Fifteen superior mutant candidates were identified, namely GDV100.1, GDV100.2, GDV100.4, GDV100.5, GDV200.2, GDV200.3, GDV200.7, GDV200.9, GDV200.10, GDV300.3, GDV300.4, GDV300.5, GDV300.12, GDV300.13. and GDV 500.1. The three best mutant candidates (M1) were GDV100.2, GDV200.3, and GDV500.1. The three best mutant candidates (M1) were GDV100.2, GDV200.3, and GDV500.1. 


Keywords


D. virgatus; Gamma-Ray Iradiation; Morphological; Salinity

Full Text:

3. Ramadani


References

Abrol, I. P., J. S. P. Yadav, and F. I. Massoud. 1988. Salt-affected Soils and Their Management. Food & Agriculture Org.

Anshori, Y. R., S. I. Aisyah, and L. K. Darusman. 2014. Induksi Mutasi Fisik dengan Iradiasi Sinar Gamma pada Kunyit (Curcuma domestica Val.). J. Hortik. Indones. 5: 84–94. https://doi.org/10.29244/jhi.5.2.84-94

Beyaz, R. and M. Yildiz. 2017. The Use of Gamma Irradiation in Plant Mutation Breeding, in: Jurić, S. (Ed.), Plant Engineering. InTech. https://doi.org/10.5772/intechopen.69974

Delastra, M. N., A. Astuti, B. Suwignyo, M. Muhlisin, and N. Umami. 2021. Gamma Radiation Effect on Growth, Production and Lignin Content of Sorghum sudanense at Different Harvest Ages. Bul. Anim. Sci. 45: 183–188. https://doi.org/10.21059/buletinpeternak.v45i3.62627

FAO. 2011. Plant Mutation Breeding and Biotechnology.

Hapsari, L., T. Trimanto, Y. Isnaini, and S. Widiarsih. 2021. Morphological characterization and gamma irradiation effect on plant growth of Curcuma heyneana Val & Zijp. Presented at the International Conference on Life Sciences and Technology (ICoLiST 2020), Malang, Indonesia, p. 030012. https://doi.org/10.1063/5.0052680

Hayati, R., Munandar, and F. K. S. Lestari. 2009. Agronomic Performance of Corn Population Selected for Nutrient Efficiency in Marginal Land. J. Agron. Indones. 37. https://doi.org/10.24831/jai.v37i1.1388

Katiyar, P., N. Pandey, and S. Keshavkant. 2022. Gamma radiation: A potential tool for abiotic stress mitigation and management of agroecosystem. Plant Stress.

Kurniajati, W. S., S. Sobir, and S. I. Aisyah. 2020. Penentuan Dosis Iradiasi Sinar Gamma dalam Meningkatkan Keragaman untuk Perbaikan Karakter Kuantitatif Bawang Merah (Allium cepa var. aggregatum). J. Ilm. Apl. Isot. Radiasi 16: 83–89. https://doi.org/10.17146/jair.2020.16.2.5962

Lelang, M. A., A. Setiadi and Fitria. 2016. Pengaruh Iradiasi Sinar Gamma Pada Benih Terhadap Keragaan Tanaman Jengger Ayam (Celosia cristata L.). Savana Cendana 1: 47–50. https://doi.org/10.32938/sc.v1i01.8

Mahata, M., Y. Rizal, and Nuraini. 2010. Pengolahan daun lamtoro mini (Desmanthus virgatus) dengan tekanan uap panas sebagai pakan alternatif sumber protein nabati untuk ternak unggas. J. Anim. Sci. 3: 32–38.

Maslukah, R., F. Yulianti, M. Roviq, and M. D. Maghfoer. 2019. Influence of Polyethylene Glycol (PEG) to Hardening Planlet Apple (Malus sp.) by The Effect of Hyperhydricity On In Vitro. PLANTROPICA J. Agric. Sci. 4: 30–38. https://doi.org/10.21776/ub.jpt.2019.004.1.4

Mountara, A., A. S. D. Irsyam, M. R. Hariri, Z. A. Anshori, and D. Andari. 2021. Keberadaan desmanthus virgatus (Fabaceae) meliar di pulau jawa. Konserv. Hayati 17: 1–9. https://doi.org/10.33369/hayati.v17i1.12813

Naibaho, D., E. Purba, D. S. Hanafiah, and S. Hasibuan. 2023. Improvement of morphology, biochemical characters, and molecular changes of local upland rice cv. Sidikalang M3 generation through induction of gamma-ray irradiation. Biodiversitas J. Biol. Divers. 24. https://doi.org/10.13057/biodiv/d240124

Normasari, R., E. L. Arumingtyas, R. Retnowati, and W. Widoretno. 2023. In vitro mutagenesis on patchouli (Pogostemon cablin Benth.) with gamma-ray irradiation on leaf explants. Biodiversitas J. Biol. Divers. 24. https://doi.org/10.13057/biodiv/d241201

Nufus, C. H., I. Prihantoro, and P. D. M. H. Karti. 2022. Tingkat Toleransi Tanaman Lamtoro mini (Desmanthus virgatus) terhadap Cekaman Salinitas melalui Teknik Kultur Jaringan: Tolerance Level of Desmanthus virgatus to Salinity Stress through Tissue Culture Techniques. J. Ilmu Nutr. Teknol. Pakan 20: 7–13. https://doi.org/10.29244/jintp.20.1.7-13

Parlaongan, A., Supriyanto, and A. S. Wulandari. 2022. Effects of Gamma Ray Irradiation to Induce Genetic Variability of Teak Planlets (Tectona grandis Linn. F.). J. Sylva Indones. 5, 10–21. https://doi.org/10.32734/jsi.v5i01.6166

Prihantoro, I., E. L. Aditia, M. A. Setiana, I. Saidah, and R. Meilania. 2023a. Peningkatan Produksi Rumput Brachiaria humidicola pada Padang Penggembalaan Melalui Suplementasi Pupuk Organic Feses Ayam. J. Agripet 23, 196–204. https://doi.org/10.17969/agripet.v23i2.27848

Prihantoro, I., A. T. Permana, S. Suwarto, E. L. Aditia, and Y. Waruwu. 2023b. Efektivitas Pengapuran dalam Meningkatkan Pertumbuhan dan Produksi Tanaman Sorgum (Sorghum bicolor (L.) Moench) sebagai Hijauan Pakan Ternak. J. Ilmu Pertan. Indones. 28, 297–304. https://doi.org/10.18343/jipi.28.2.297

Rizki, A., P. D. M. H. Karti, and I. Prihantoro. 2022. Efektivitas Berbagai Produk Fungi Mikoriza Arbuskula Dalam Meningkatkan Produktivitas Stylosanthes guianensis Pada Tanah Masam: J. Ilmu Nutr. Teknol. Pakan 20: 89–94. https://doi.org/10.29244/jintp.20.3.89-94

Sattar, M. N., Z. Iqbal, J. M. Al-Khayri, and S. M. Jain. 2021. Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience. Plants 10, 1347. https://doi.org/10.3390/plants10071347

Susila, E., A. Susilowati, and A. Yunus. 2019. The morphological diversity of Chrysanthemum resulted from gamma ray irradiation. Biodiversitas J. Biol. Divers. 20, 463–467. https://doi.org/10.13057/biodiv/d200223

Syamsu, J. A. 2006. Analisis Potensi Limbah Tanaman Pangan Sebagai Sumber Pakan Ternak Ruminansia di Sulawesi Selatan. Disertasi.

Syukur, M., S. Sujiprihati, R. Yunianti, S. Sastrosumarjo, Y. Wahyu, S. L. Aisyah, and N. Januarini. 2015. Sitogenetika Tanaman Edisi Kedua, 2nd ed. Penerbit IPB Press, Bogor.

Tillman, A., H. Hartadi S. Reksohadiprodjo S. Prawirokusum S. Lebdosoekojo. 1991. Ilmu Makanan Ternak Dasar. Gadjah Mada University Press.

van Harten, A. M. 1998. Mutation Breeding: Theory and Practical Applications. Cambridge University Press, Cambridge.



DOI: https://doi.org/10.21059/buletinpeternak.v48i4.94141

Article Metrics

Abstract views : 475 | views : 262

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.