Technical Note: Silo Type for Laboratory Scale Experiment on the Silage Quality
Dimas Hand Vidya Paradhipta(1*), Kharisma Taufiqa Hidayah(2), Putri Candrika Sari(3), Nu'man Firdaus(4), Andriyani Astuti(5), Young Ho Joo(6)
(1) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281
(2) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281
(3) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281
(4) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281
(5) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281
(6) Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828
(*) Corresponding Author
Abstract
The present study was aimed to investigate the effects of silo type for laboratory scale on chemical compositions, fermentation characteristics, and microbial counts of silage. Four typical silos use on a laboratory scale, consisting of transparent plastic bags (Silo A), black plastic bags (Silo B), transparent plastic bags covered with a bucket (Silo C), and transparent plastic bags covered with a sack (Silo D). All silo types were used to ensilage 5 kg Elephant grass (Pennisetum purpureum cv. Mott) for 21 d. Each Silo was conducted in triplicate. After ensiling, Silo C had higher crude protein with lower ammonia compared to other Silos (p<0.05). In addition, the Silo C resulted in lower pH, butyrate, and yeast with higher lactate and lactic acid bacteria (p<0.05) compared to other Silos. Silo C had the lowest bulginess, which indicated the optimum ensiling process. The present study concluded that ensiling forage with Silo C is more suitable and recommended for laboratory scale, which can reduce the errors, especially in the nutrient loss, production of ammonia, lactate, and butyrate, and also the counts of microbes in the silage.
Keywords
Full Text:
5. DimasReferences
AOAC. 2005. Association of Official Analytical Chemists. Official methods of analysis, 18th edition, Washington DC, USA.
Barker, S. B. and W. H. Summerson. 1941. The colorimetric determination of lactic acid in biological material. J Bio Chem. 138: 535–554. https://doi.org/10.1016/S0021-9258(18)51379-X
Borreani, G., E. Tabbacco, R. J. Schmidt, B. J. Holmes, and R. E. Muck. 2018. Silage review: Factor affecting dry matter and quality losses in silages. J Dairy Sci. 101: 3952-3979. https://doi.org/10.3168/jds.2017-13837
Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry. 8: 130-132. https://doi.org/10.1093/clinchem/8.2.130
Chotimah, Q., M. Nada, E. D. Rahayu, D. H. V. Paradhipta, H. Sanjaya, A. R. C. Wardani, and M. S. Anam. 2024. Effects of Achatina fulica mucus as an antimicrobial additive on chemical compositions, fermentation quality, and in vitro digestibility of elephant grass silage. Vet. Integr. Sci. 22: 667-681. https://doi.org/10.12982/VIS.2024.045
Filipek, J. and R. Dvorak. 2009. Determination of the volatile fatty acid content in the rumen liquid comparison of gas chromatography and capillary isotachophoresis. Acta Veterinaria Brno 78: 627-633. https://doi.org/10.2754/avb200978040627
Kim, D. H., S. M. Amanullah, H. J. Lee, Y. H. Joo, O. K. Han, A. T. Adesogan, and S. C. Kim. 2018. Effects of hybrid and bacterial inoculation on fermentation quality and fatty acid profile of barley silage. Anim. Sci. J. 89: 140-148. https://doi.org/10.1111/asj.12923
Kung, Jr. L., R. D. Shaver, J. R. Grant, and R. J. Schmidt. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101: 4020–4033. https://doi.org/10.3168/jds.2017-13909.
Lee, S. S., H. J. Lee, D. H. V. Paradhipta, Y. H. Joo, S. B. Kim, D. H. Kim, and S. C. Kim. 2019. Temperature and microbial changes of corn silage during aerobic exposure. Asian-australas. J. Anim. Sci. 32: 988–995. https://doi.org/10.3390/pr9050879
McDonald, P., A. R. Henderson, and S. J. E. Heron. 1991. The biochemistry of silage. 2nd edition. Chalcombe Publisher, Buckinghamshire, pp. 340
Muck, R. E., E. M. G. Nadeau., T.A. McAllister., F.E. Contreras-Govea., M.C. Santos., Jr.L. Kung. 2018. Silage review: recent advances and future uses of silage additives. J. Dairy Sci. 10: 3980–4000
Paradhipta, D.H.V., Y.H. Joo., H.J. Lee., S.S. Lee., D.H. Kim., J.D. Kim., and S.C. Kim. 2019. Effects of inoculant application on fermentation quality and rumen digestibility of high moisture sorghum-sudangrass silage. J. Appd. Anim. Res. 47: 486-491. https://doi.org/09712119.2019.1670667
Paradhipta, D.H.V., Y.H. Joo., H.J. Lee., S.S. Lee., H.T. Noh., J.S. Choi., J. Kim., H.G. Min., and S.C. Kim. 2021. Effects of inoculants producing antifungal and carboxylesterase activities on corn silage and its shelf life against mold contamination at feed-out phase. Microorganisms 9: 1–16. https://doi.org/10.33 90/microorganisms9030558
Rafiauddin, M. Abdullah., K. Javed., M.A. Jabbar., M.Q. Shahid., P.S. Jan., M.A. Khan., M. Ramzan., Hamdullah. 2016. Impact of flowering stage on nutritive value, physical quality and digestibility of silages made from cereal fodders. Appd Ecol Environ Res. 14: 149-157. http://dx.doi.org/10.15666/aeer/1405_149157
Sanjaya, H.B., N. Umami., A. Astuti., Muhlisin, B. Suwignyo., M.M. Rahman., K. Umpuch., and E.R.V. Rahayu. 2022. Performance and in vivo digestibility of three varieties of napier grass in thin-tailed sheep. Pertanika J. Trop. Agric. Sci. 45: 505-517. https://doi/org/10.47836/pjtas.45.2.11
Santos, M.C., A.L. Lock., G.D. Mechor., and Jr. L. Kung. 2014. Effects of a spoilage yeast from silage on in vitro ruminal fermentation. J. Dairy. Sci. 98: 2603–2610. https://doi/org/10.3168/jds.2014-8683
Sun, L. N. Na., X. Li., Z. Li., C. Wang., X. Wu., Y. Xiao., G. Yin., S. Liu., Z. Liu., Y. Xue., and F. Yang. 2021. Impact of packing density on the bacterial community, Fermentation, and in vitro digestibility of whole-crop barley silage. Agriculture. 11: 672. https://doi.org/10.3390/ agriculture11070672
Umami, N., B.P. Widyobroto., H.D.V. Paradhipta., Z.A. Solekhah., and L.L. Nurjanah. 2023. Silage quality based on physical and chemical of several napier grass varieties (Pennisetum purpureum) supplied with different levels of pollard. IOP Conf Ser: Earth Environ Sci. 1183: 012015. https://doi.org/10.1088/1755-1315/1183/1/012015
Wahyudi A., L. Hendraningsih., Sutawi., R.H. Setyobudi., and M. Mei. 2019. Fermentation quality of Pennisetum purpureum cv. Mott ensiled with Lactobacillus plantarum and sugarcane molasses. IOP Conf Ser: Earth Environ Sci. 293: 012007. https://doi.org/10.1088/1755-1315/293/1/012007
Wodebo, K.Y., T.T. Ejeta., S.D. Cherkos., W.G. Terefe., J.N.A. Wamatu., M.Z. Equle. 2023. Fermentation Characteristics and Nutritional Value of Avena sativa Genotypes Ensiled with or without Napier Grass (Pennisetum purpureum). Sustainability. 15: 1-12. https://doi.org/ 10.3390/su15021260
Zhang, H., J. Wu., L. Gao., J. Yu., X, Yuan., W. Zhu., X. Wang., and Z. Cui. 2018 Aerobic deterioration of corn stalk silage and its effect on methane production and microbial community dynamics in anaerobic digestion. Bioresour Technol. 250: 828-837. https://doi.org/10.1016/j.biortech.2017.09.149
DOI: https://doi.org/10.21059/buletinpeternak.v48i3.95351
Article Metrics
Abstract views : 241 | views : 130Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Buletin Peternakan (Bulletin of Animal Science) Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.