An Innovative Strategy for the Green Synthesis of Nanochitosan Using Plant Extracts and Their Possible Applications: A Review

https://doi.org/10.22146/ijc.100148

Riki Riki(1), Islamudin Ahmad(2), Herman Herman(3), Arsyik Ibrahim(4), Arman Rusman(5), Erwin Samsul(6), Rolan Rusli(7), Muhammad Arifuddin(8), Junaidin Junaidin(9), Mahfuzun Bone(10), Hifdzur Rashif Rijai(11), Baso Didik Hikmawan(12*)

(1) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(2) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(3) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(4) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(5) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(6) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(7) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(8) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(9) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(10) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(11) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(12) Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
(*) Corresponding Author

Abstract


The numerous applications of nanochitosan in a variety of sectors, including medicine, food, and agriculture, attract researchers to work toward the development of environmentally favorable, safe, and efficient synthesis methods. Currently, a biological approach is being developed to synthesize nanochitosan to address the limitations of conventional methods. The synthesis of biogenic pathways employs biological entities, including plant extracts and microorganisms, as nanoparticle-forming agents. The use of extracts is more desirable due to the simple working procedure, the absence of hazardous chemicals, the economic benefits, and the use of basic equipment. This article highlights the role of biomolecules in plant extracts, including polyphenols, terpenoids, citric acid, alkaloids, and polysaccharides, in the synthesis of nanochitosan. Nanoparticle preparation protocols and characterization using zeta potential analysis techniques, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR) are briefly described. The potential applications of green nanochitosan are also discussed, considering the results of biological activity testing and the potential mechanisms associated with these activities. According to the results of numerous studies highlighted in this review, nanochitosan synthesis utilizing plant extracts appears to be a promising alternative approach to conventional methods.

Keywords


chitosan; forming agents; green chemistry; nanoparticles; bioactivity

Full Text:

Full Text PDF


References

[1] Tewari, D., and Mutreja, S., 2021, Tewari, D., 2021, Nanotechnology Market by Type and Application: Global Opportunity Analysis and Industry Forecast, 2021–2030, Emerging and Next Generation Technologies, https://www. alliedmarketresearch.com/nanotechnology-market, accessed on July 5, 2024.

[2] Salem, S.S., Hammad, E.N., Mohamed, A.A., and El-Dougdoug, W., 2023, A comprehensive review of nanomaterials: types, synthesis, characterization, and applications, Biointerface Res. Appl. Chem., 13 (1), 41.

[3] El-Naggar, N.E.A., Hussein, M.H., and El-Sawah, A.A., 2017, Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity, Sci. Rep., 7 (1), 10844.

[4] Vodyashkin, A.A., Kezimana, P., Vetcher, A.A., and Stanishevskiy, Y.M., 2022, Biopolymeric nanoparticles–multifunctional materials of the future, Polymers, 14 (11), 2287.

[5] Hisham, F., Maziati Akmal, M.H., Ahmad, F., Ahmad, K., and Samat, N., 2024, Biopolymer chitosan: Potential sources, extraction methods, and emerging applications, Ain Shams Eng. J., 15 (2), 102424.

[6] Joseph, S.M., Krishnamoorthy, S., Paranthaman, R., Moses, J.A., and Anandharamakrishnan, C., 2021, A review on source-specific chemistry, functionality, and applications of chitin and chitosan, Carbohydr. Polym. Technol. Appl., 2, 100036.

[7] Susilowati, E., Mahardiani, L., Ariani, S.R.D., and Sulaeman, I.M., 2023, Synthesis, optimization and antibacterial performance of colloidal silver nanoparticles in chitosan, Indones. J. Chem., 23 (6), 1652–1663.

[8] Wang, J., He, W., Yang, D., Cao, H., Bai, Y., Guo, J., and Su, Z., 2019, Beneficial metabolic effects of chitosan and chitosan oligosaccharide on epididymal WAT browning and thermogenesis in obese rats, Molecules, 24 (24), 4455.

[9] Xia, Z., Chen, J., and Wu, S., 2013, Hypolipidemic activity of the chitooligosaccharides from Clanis bilineata (Lepidoptera), an edible insect, Int. J. Biol. Macromol., 59, 96–98.

[10] Jeong, S., Min Cho, J., Kwon, Y.I., Kim, S.C., Yeob Shin, D., and Ho Lee, J., 2019, Chitosan oligosaccharide (GO2KA1) improves postprandial glycemic response in subjects with impaired glucose tolerance and impaired fasting glucose and in healthy subjects: A crossover, randomized controlled trial, Nutr. Diabetes, 9 (1), 1–9.

[11] Niaz, T., Shabbir, S., Manzoor, S., Rehman, A., Rahman, A., Nasir, H., and Imran, M., 2016, Antihypertensive nano-ceuticales based on chitosan biopolymer: Physico-chemical evaluation and release kinetics, Carbohydr. Polym., 142, 268–274.

[12] Shabrandi, A., Azizi, S., Hobbenaghi, R., Ownagh, A., and Keshipour, S., 2017, The healing effect of chitosan supported nano-CeO2 on experimental excisional wound infected with Pseudomonas aeruginosa in rat, Iran. J. Vet. Surg., 12 (2), 9–20.

[13] Afonso, C.R., Hirano, R.S., Gaspar, A.L., Chagas, E.G.L., Carvalho, R.A., Silva, F.V., Leonardi, G.R., Lopes, P.S., Silva, C.F., and Yoshida, C.M.P., 2019, Biodegradable antioxidant chitosan films useful as an anti-aging skin mask, Int. J. Biol. Macromol., 132, 1262–1273.

[14] Baek, J., Ramasamy, M., Willis, N.C., Kim, D.S., Anderson, W.A., and Tam, K.C., 2021, Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules, Curr. Res. Food Sci., 4, 215–223.

[15] Kustiyah, E., Roziafanto, A.N., Amrullah, M., Priadi, D., and Chalid, M., 2022, Effect of calcium carbonate content on the mechanical and thermal properties of chitosan-coated poly(urethane) foams, Indones. J. Chem., 22 (3), 827–834.

[16] Javaid, M.A., Khera, R.A., Zia, K.M., Saito, K., Bhatti, I.A., and Asghar, M., 2018, Synthesis and characterization of chitosan modified polyurethane bio-nanocomposites with biomedical potential, Int. J. Biol. Macromol., 115, 375–384.

[17] Facchinatto, W.M., Galante, J., Mesquita, L., Silva, D.S., Martins dos Santos, D., Moraes, T.B., Campana-Filho, S.P., Colnago, L.A., Sarmento, B., and das Neves, J., 2021, Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis, Acta Biomater., 125, 312–321.

[18] Tamer, T.M., Hassan, M.A., Omer, A.M., Valachová, K., Mohy Eldin, M.S., Collins, M.N., and Šoltés, L., 2017, Antibacterial and antioxidative activity of O-amine functionalized chitosan, Carbohydr. Polym., 169, 441–450.

[19] Jha, R., and Mayanovic, R.A., 2023, A review of the preparation, characterization, and applications of chitosan nanoparticles in nanomedicine, Nanomaterials, 13 (8), 1302.

[20] Rinaudc, M., Pavlov, G., and Desbrières, J., 1999, Solubilization of chitosan in strong acid medium, Int. J. Polym. Anal. Charact., 5 (3), 267–276.

[21] Thandapani, G., Supriya Prasad, P., Sudha, P.N., and Sukumaran, A., 2017, Size optimization and in vitro biocompatibility studies of chitosan nanoparticles, Int. J. Biol. Macromol., 104, 1794–1806.

[22] Rahman, A., Suherman, S., and Suratman, A., 2024, Sodium triphosphate effect on encapsulation of vitamin B6 into chitosan-alginate nanoparticles and its in vitro drug release study, Indones. J. Chem., 24 (5), 1268–1278.

[23] Shih, P.Y., Liao, Y.T., Tseng, Y.K., Deng, F.S., and Lin, C.H., 2019, A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity, Front. Microbiol., 10, 602.

[24] Pereira, S., Costa-Ribeiro, A., Teixeira, P., Rodríguez-Lorenzo, L., Prado, M., Cerqueira, M.A., and Garrido-Maestu, A., 2023, Evaluation of the antimicrobial activity of chitosan nanoparticles against Listeria monocytogenes, Polymers, 15 (18), 3759.

[25] Canbolat, F., Demir, N., Yayıntas, O.T., Pehlivan, M., Eldem, A., Ayna, T.K., and Senel, M., 2024, Chitosan nanoparticles loaded with quercetin and valproic acid: A novel approach for enhancing antioxidant activity against oxidative stress in the SH-SY5Y human neuroblastoma cell line, Biomedicines, 12 (2), 287.

[26] Punjabi, K., Adhikary, R.R., Patnaik, A., Bendale, P., Saxena, S., and Banerjee, R., 2022, Lectin-functionalized chitosan nanoparticle-based biosensor for point-of-care detection of bacterial infections, Bioconjugate Chem., 33 (8), 1552–1563.

[27] Manimaran, D., Elangovan, N., Mani, P., Subramanian, K., Ali, D., Alarifi, S., Palanisamy, C.P., Zhang, H., Rangasamy, K., Palanisamy, V., Mani, R., Govarthanan, K., Aruni, W., Shanmugam, R., Srinivasan, G.P., and Kalirajan, A., 2022, Isolongifolene-loaded chitosan nanoparticles synthesis and characterization for cancer treatment, Sci. Rep., 12 (1), 19250.

[28] Baluchi, A., and Homaei, A., 2024, Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application, Int. J. Biol. Macromol., 257, 128655.

[29] Benettayeb, A., Seihoub, F.Z., Pal, P., Ghosh, S., Usman, M., Chia, C.H., Usman, M., and Sillanpää, M., 2023, Chitosan nanoparticles as potential nano-sorbent for removal of toxic environmental pollutants, Nanomaterials, 13 (3), 447.

[30] Ways, T.M.M., Filippov, S.K., Maji, S., Glassner, M., Cegłowski, M., Hoogenboom, R., King, S., Lau, W.M., and Khutoryanskiy, V.V., 2022, Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: Synthesis, structural characterisation and diffusion studies, J. Colloid Interface Sci., 626, 251–264.

[31] Choudhary, R.C., Kumaraswamy, R.V., Kumari, S., Sharma, S.S., Pal, A., Raliya, R., Biswas, P., and Saharan, V., 2017, Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.), Sci. Rep., 7 (1), 9754.

[32] Yanat, M., and Schroën, K., 2021, Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging, React. Funct. Polym., 161, 104849.

[33] Al-Zahrani, S.S., Bora, R.S., and Al-Garni, S.M., 2021, Antimicrobial activity of chitosan nanoparticles, Biotechnol. Biotechnol. Equip., 35 (1), 1874–1880.

[34] Nadaroglu, H., Gungor, A.A., Ince, S., and Babagil, A., 2017, Green synthesis and characterisation of platinum nanoparticles using quail egg yolk, Spectrochim. Acta - A: Mol. Biomol. Spectrosc., 172, 43–47.

[35] Ying, S., Guan, Z., Ofoegbu, P.C., Clubb, P., Rico, C., He, F., and Hong, J., 2022, Green synthesis of nanoparticles: Current developments and limitations, Environ. Technol. Innovation, 26, 102336.

[36] Sharifi-Rad, J., Quispe, C., Butnariu, M., Rotariu, L.S., Sytar, O., Sestito, S., Rapposelli, S., Akram, M., Iqbal, M., Krishna, A., Anil Kumar, N.V., Braga, S.S., Cardoso, S.M., Jafernik, K., Ekiert, H., Cruz-Martins, N., Szopa, A., Villagran, M., Mardones, L., Martorell, M., Docea, A.O., and Calina, D., 2021, Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment, Cancer Cell Int., 21 (1), 318.

[37] Hussein, A.A., and Aldujaili, N.H., 2020, Antimicrobial, antibiofilm, and antioxidant activity of chitosan nanoparticles synthesized by E. coli, J. Phys.: Conf. Ser., 1664 (1), 012118.

[38] El-Naggar, N.E.A., Bashir, S.I., Rabei, N.H., and Saber, W.E.I.A., 2022, Innovative biosynthesis, artificial intelligence-based optimization, and characterization of chitosan nanoparticles by Streptomyces microflavus and their inhibitory potential against Pectobacterium carotovorum, Sci. Rep., 12 (1), 21851.

[39] Sathiyabama, M., and Parthasarathy, R., 2016, Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi, Carbohydr. Polym., 151, 321–325.

[40] Ijaz, M., Zafar, M., and Iqbal, T., 2020, Green synthesis of silver nanoparticles by using various extracts: A review, Inorg. Nano-Met. Chem., 51 (5), 744–755.

[41] El-Naggar, N.E.A., Shiha, A.M., Mahrous, H., and Mohammed, A.B.A., 2024, A sustainable green-approach for biofabrication of chitosan nanoparticles, optimization, characterization, its antifungal activity against phytopathogenic Fusarium culmorum and antitumor activity, Sci. Rep., 14 (1), 11336.

[42] El-Naggar, N.E.A., Saber, W.E.I.A., Zweil, A.M., and Bashir, S.I., 2022, An innovative green synthesis approach of chitosan nanoparticles and their inhibitory activity against phytopathogenic Botrytis cinerea on strawberry leaves, Sci. Rep., 12 (1), 3515.

[43] Nigam, S., Ram, D.V., and Kumar, A.A.M., 2022, Synthesis of chitosan-based nanoparticles from plant extract of Clitoria ternatea and study of their antibacterial activity, Int. J. Pharm. Sci. Rev. Res., 73 (2), 154–160.

[44] Sathiyabama, M., Boomija, R.V., Muthukumar, S., Gandhi, M., Salma, S., Prinsha, T.K., and Rengasamy, B., 2024, Green synthesis of chitosan nanoparticles using tea extract and its antimicrobial activity against economically important phytopathogens of rice, Sci. Rep., 14 (1), 7381.

[45] Kalia, A., Kaur, M., Shami, A., Jawandha, S.K., Alghuthaymi, M.A., Thakur, A., and Abd-Elsalam, K.A., 2021, Nettle-leaf extract derived ZnO/CuO nanoparticle-biopolymer-based antioxidant and antimicrobial nanocomposite packaging films and their impact on extending the post-harvest shelf life of guava fruit, Biomolecules, 11 (2), 224.

[46] Mamgain, A., Kenwat, R., and Paliwal, R., 2024, Biopolymer zein nanoparticles loaded with Moringa oleifera extract for improved wound healing activity: Development, QbD based optimization and in vivo study, Int. J. Biol. Macromol., 263, 130314.

[47] Md Ishak, N.A.I., Kamarudin, S.K., and Timmiati, S.N., 2019, Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview, Mater. Res. Express, 6 (11), 112004.

[48] Hussain, I., Singh, N.B., Singh, A., Singh, H., and Singh, S.C., 2016, Green synthesis of nanoparticles and its potential application, Biotechnol. Lett., 38 (4), 545–560.

[49] Vijayaram, S., Razafindralambo, H., Sun, Y.Z., Vasantharaj, S., Ghafarifarsani, H., Hoseinifar, S.H., and Raeeszadeh, M., 2024, Applications of green synthesized metal nanoparticles — A review, Biol. Trace Elem. Res., 202 (1), 360–386.

[50] Soto, K.M., López-Romero, J.M., Mendoza, S., Peza-Ledesma, C., Rivera-Muñoz, E.M., Velazquez-Castillo, R.R., Pineda-Piñón, J., Méndez-Lozano, N., and Manzano-Ramírez, A., 2023, Rapid and facile synthesis of gold nanoparticles with two Mexican medicinal plants and a comparison with traditional chemical synthesis, Mater. Chem. Phys., 295, 127109.

[51] Amaliyah, S., Pangesti, D.P., Masruri, M., Sabarudin, A., and Sumitro, S.B., 2020, Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent, Heliyon, 6 (8), e04636.

[52] Fernando, K.M., Gunathilake, C.A., Yalegama, C., Samarakoon, U.K., Fernando, C.A.N., Weerasinghe, G., Pamunuwa, G.K., Soliman, I., Ghulamullah, N., Rajapaksha, S.M., and Fatani, O., 2024, Synthesis of silver nanoparticles using green reducing agent: Ceylon olive (Elaeocarpus serratus): Characterization and investigating their antimicrobial properties, J. Compos. Sci., 8 (2), 43.

[53] El-Naggar, N.E.A., Shiha, A.M., Mahrous, H., and Mohammed, A.B.A., 2022, Green synthesis of chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multi drug resistant biofilm-forming Acinetobacter baumannii, Sci. Rep., 12 (1), 19869.

[54] Nagaonkar, D., Gaikwad, S., and Rai, M., 2015, Catharanthus roseus leaf extract-synthesized chitosan nanoparticles for controlled in vitro release of chloramphenicol and ketoconazole, Colloid Polym. Sci., 293 (5), 1465–1473.

[55] Miu, B.A., and Dinischiotu, A., 2022, New green approaches in nanoparticles synthesis: An overview, Molecules, 27 (19), 6472.

[56] Rahman, A., Kafi, M.A., Beak, G., Saha, S.K., Roy, K.J., Habib, A., Faruqe, T., Siddique, M.P., Islam, M.S., Hossain, K.S., and Choi, J.W., 2024, Green synthesized chitosan nanoparticles for controlling multidrug-resistant mecA- and blaZ-positive Staphylococcus aureus and aadA1-positive Escherichia coli, Int. J. Mol. Sci., 25 (9), 4746.

[57] Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., and Rokhum, S.L., 2021, Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature, RSC Adv., 11 (5), 2804–2837.

[58] Duraisamy, N., Dhayalan, S., Shaik, M.R., Shaik, A.H., Shaik, J.P., and Shaik, B., 2022, Evaluation of antioxidant, cytotoxic, mutagenic and other inhibitory potentials of green synthesized chitosan nanoparticles, Crystals, 12 (11), 1540.

[59] El-Naggar, N.E.A., Dalal, S.R., Zweil, A.M., and Eltarahony, M., 2023, Artificial intelligence-based optimization for chitosan nanoparticles biosynthesis, characterization and in‑vitro assessment of its anti-biofilm potentiality, Sci. Rep., 13 (1), 4401.

[60] Akintelu, S.A., and Folorunso, A.S., 2020, A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications, BioNanoScience, 10 (4), 848–863.

[61] Salem, S.S., and Fouda, A., 2021, Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview, Biol. Trace Elem. Res., 199 (1), 344–370.

[62] Garavand, F., Cacciotti, I., Vahedikia, N., Rehman, A., Tarhan, Ö., Akbari-Alavijeh, S., Shaddel, R., Rashidinejad, A., Nejatian, M., Jafarzadeh, S., Azizi-Lalabadi, M., Khoshnoudi-Nia, S., and Jafari, S.M., 2022, A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging, Crit. Rev. Food Sci. Nutr., 62 (5), 1383–1416.

[63] Joudeh, N., and Linke, D., 2022, Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists, J. Nanobiotechnol., 20 (1), 262.

[64] Quevedo, A.C., Guggenheim, E., Briffa, S.M., Adams, J., Lofts, S., Kwak, M., Lee, T.G., Johnston, C., Wagner, S., Holbrook, T.R., Hachenberger, Y.U., Tentschert, J., Davidson, N., and Valsami-Jones, E., 2021, UV-vis spectroscopic characterization of nanomaterials in aqueous media, J. Visualized Exp., 176, e61764.

[65] Vaezifar, S., Razavi, S., Golozar, M.A., Karbasi, S., Morshed, M., and Kamali, M., 2013, Effects of some parameters on particle size distribution of chitosan nanoparticles prepared by ionic gelation method, J. Cluster Sci., 24 (3), 891–903.

[66] Fayaz, M., Tiwary, C.S., Kalaichelvan, P.T., and Venkatesan, R., 2010, Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride, Colloids Surf., B, 75 (1), 175–178.

[67] Khan, M.R., Urmi, M.A., Kamaraj, C., Malafaia, G., Ragavendran, C., and Rahman, M.M., 2023, Green synthesis of silver nanoparticles with its bioactivity, toxicity and environmental applications: A comprehensive literature review, Environ. Nanotechnol., Monit. Manage., 20, 100872.

[68] Duraisamy, N., Dhayalan, S., Shaik, M.R., Shaik, A.H., Shaik, J.P., and Shaik, B., 2022, Green synthesis of chitosan nanoparticles using of Martynia annua L. ethanol leaf extract and their antibacterial activity, Crystals, 12 (11), 1550.

[69] El-Naggar, N.E.A., Eltarahony, M., Hafez, E.E., and Bashir, S.I., 2023, Green fabrication of chitosan nanoparticles using Lavendula angustifolia, optimization, characterization and in‑vitro antibiofilm activity, Sci. Rep., 13 (1), 11127.

[70] Rasaee, I., Ghannadnia, M., and Honari, H., 2016, Antibacterial properties of biologically formed chitosan nanoparticles using aqueous leaf extract of Ocimum basilicum, Nanomed. J., 3 (4), 240–247.

[71] Manne, A.A., Viswanath, K.V., Kumar, G.A., Mangamuri, U., and Podha, S., 2020, Pterocarpus marsupium Roxb. heartwood extract synthesized chitosan nanoparticles and its biomedical applications, J. Genet. Eng. Biotechnol., 18 (1), 19.

[72] Nguyen, T.V., Nguyen, T.T.H., Wang, S.L., Vo, T.P.K., and Nguyen, A.D., 2017, Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex, Res. Chem. Intermed., 43 (6), 3527–3537.

[73] Nguyen Van, S., Dinh Minh, H., and Nguyen Anh, D., 2013, Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house, Biocatal. Agric. Biotechnol., 2 (4), 289–294.

[74] Mukhopadhyay, P., Sarkar, K., Chakraborty, M., Bhattacharya, S., Mishra, R., and Kundu, P.P., 2013, Oral insulin delivery by self-assembled chitosan nanoparticles: In vitro and in vivo studies in diabetic animal model, Mater. Sci. Eng., C, 33 (1), 376–382.

[75] Bhattacharjee, S., 2016, DLS and zeta potential – What they are and what they are not?, J. Controlled Release, 235, 337–351.

[76] Hanaor, D., Michelazzi, M., Leonelli, C., and Sorrell, C.C., 2012, The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2, J. Eur. Ceram. Soc., 32 (1), 235–244.

[77] Kheiri, A., Moosawi Jorf, S.A., Malihipour, A., Saremi, H., and Nikkhah, M., 2016, Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse, Int. J. Biol. Macromol., 93, 1261–1272.

[78] Ali, L.M., Hassan, H.E., El-Raie, A.E., Ahmed, A.E.R.A., and Saleh, S.S., 2019, The prospect of using guava leaf extract for biosynthesizing chitosan nanoparticles, Adv. Nat. Sci: Nanosci. Nanotechnol., 10 (4), 045005.

[79] Mohamed, H.I., Mahmoud, N.M.R., Ramadan, A., Al-Subaie, A.M., and Ahmed, S.B., 2024, Novel biological-based strategy for synthesis of green nanochitosan and copper-chitosan nanocomposites: Promising antibacterial and hematological agents, Nanomaterials, 14 (13), 1111.

[80] Metwally, A.A., Soliman, A.S., Abdel-Hady, A.N.A.A., Ebnalwaled, K., Mohamedien, D., Abdelhameed, A.A., and Saied, A.A., 2023, In vivo wound-healing effect of chemical and green synthesized chitosan nanoparticles using Lawsonia inermis ethanolic extract, Microsc. Microanal., 29 (3), 1178–1189.

[81] Ahmed, S.B., Mohamed, H.I., Al-Subaie, A.M., Al-Ohali, A.I., and Mahmoud, N.M.R., 2021, Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite, Sci. Rep., 11 (1), 9540.

[82] Xing, Y., Wang, X., Guo, X., Yang, P., Yu, J., Shui, Y., Chen, C., Li, X., Xu, Q., Xu, L., Bi, X., and Liu, X., 2021, Comparison of antimicrobial activity of chitosan nanoparticles against bacteria and fungi, Coatings, 11 (7), 769.

[83] Avadi, M.R., Sadeghi, A.M.M., Tahzibi, A., Bayati, K., Pouladzadeh, M., Zohuriaan-Mehr, M.J., and Rafiee-Tehrani, M., 2004, Diethylmethyl chitosan as an antimicrobial agent: Synthesis, characterization and antibacterial effects, Eur. Polym. J., 40 (7), 1355–1361.

[84] Palma-Guerrero, J., Lopez-Jimenez, J.A., Pérez-Berná, A.J., Huang, I.C., Jansson, H.B., Salinas, J., Villalaín, J., Read, N.D., and Lopez-Llorca, L.V., 2010, Membrane fluidity determines sensitivity of filamentous fungi to chitosan, Mol. Microbiol., 75 (4), 1021–1032.

[85] Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., and Li, P., 2020, Reactive oxygen species-related nanoparticle toxicity in the biomedical field, Nanoscale Res. Lett., 15 (1), 115.

[86] Elkeiy, M.M., Khamis, A.A., El-Gamal, M.M., Abo Gazia, M.M., Zalat, Z.A., and El-Magd, M.A., 2020, Chitosan nanoparticles from Artemia salina inhibit progression of hepatocellular carcinoma in vitro and in vivo, Environ. Sci. Pollut. Res., 27 (16), 19016–19028.

[87] Ganesan, A., and Rengarajan, J., 2024, Green synthesis of chitosan nanoparticles using Cassia fistula leaf extract: Evaluation of antimicrobial, antioxidant, antibiofilm, and cytotoxic activities, 3 Biotech, 14 (10), 223.

[88] Khairy, A.M., Tohamy, M.R.A., Zayed, M.A., Mahmoud, S.F., El-Tahan, A.M., El-Saadony, M.T., and Mesiha, P.K., 2022, Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt, Saudi J. Biol. Sci., 29 (4), 2199–2209.

[89] Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., and Acharya, K., 2015, Chitosan nanoparticles: A positive modulator of innate immune responses in plants, Sci. Rep., 5 (1), 15195.

[90] Choi, C.H.J., Zuckerman, J.E., Webster, P., and Davis, M.E., 2011, Targeting kidney mesangium by nanoparticles of defined size, Proc. Natl. Acad. Sci. U. S. A., 108 (16), 6656–6661.

[91] Liu, G.W., Pippin, J.W., Eng, D.G., Lv, S., Shankland, S.J., and Pun, S.H., 2020, Nanoparticles exhibit greater accumulation in kidney glomeruli during experimental glomerular kidney disease, Physiol. Rep., 8 (15), e14545.

[92] Alqahtani, M.S., Syed, R., and Alshehri, M., 2020, Size-dependent phagocytic uptake and immunogenicity of gliadin nanoparticles, Polymers, 12 (11), 2576.

[93] Axelsson, O., Yousefpour, N., Björnberg, O., Ekengard, E., and Lekmeechai, S., 2024, Size-dependent renal filtration model explains human pharmacokinetics of a functional nanoparticle: The SPAGOPIX-01 clinical trial, Nanomed.: Nanotechnol., Biol. Med., 62, 102774.



DOI: https://doi.org/10.22146/ijc.100148

Article Metrics

Abstract views : 1 | views : 0


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.