Dysobinol from Chisocheton macrophyllus Selectively Induces G1 Cell Cycle Arrest in MCF-7 Breast Cancer Cells
Shabarni Gaffar(1*), Ghina Uli Felicia Tambunan(2), Ersanda Hafiz(3), Tati Herlina(4), Hesti Lina Wiraswati(5), Nurlelasari Nurlelasari(6), Ilma Fauziah Ma'ruf(7)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(5) Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(7) Research Center for Climate and Atmosphere, National Research and Innovation Agency, Jl. Sangkuriang, Bandung 40135, Indonesia
(*) Corresponding Author
Abstract
Chisocheton macrophyllus is a medicinal plant that contains sesquiterpenoids, triterpenoids, limonoids, steroids, and phenolic compounds. This research aimed to assess the effect of Dysobinol, a limonoid compound from the seed of C. macrophyllus, on MCF-7 cell growth. Cell viability was evaluated using the MTS colorimetric assay, DNA fragmentation was assessed by agarose electrophoresis, apoptosis and cell cycle arrest were determined by flow cytometry, and gene expression levels were evaluated using qRT-PCR. Dysobinol was also analyzed in silico using drug-likeness, pharmacokinetic, and molecular docking analysis. Dysobinol demonstrated moderate cytotoxicity against MCF-7 cells, with an IC50 of 148.20 μg/mL. Dysobinol induced G1 phase cell cycle arrest that was not accompanied by the induction of apoptosis in MCF-7 cells. In silico studies showed that the EGFR/AKT/cyclin D1 proteins were affected by Dysobinol. Furthermore, drug-likeness and pharmacokinetics analysis showed that Dysobinol is bioavailable orally and has high gastrointestinal absorption and low penetration into the blood-brain barrier. Together, these results indicate that Dysobinol can regulate breast cancer cell proliferation through cell cycle arrest rather than apoptosis, and its pharmacological profile highlights its potential as a promising lead compound for anticancer drug development.
Keywords
Full Text:
Full Text PDFReferences
[1] Centers for Disease Control and Prevention, 2024, Deaths and Mortality, https://www.cdc.gov/nchs/fastats/deaths.htm, accessed on 25 August 2024.
[2] Chakraborty, P., 2018, Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery, Biochim. Open, 6, 9–16.
[3] Li, C.Q., Lei, H.M., Hu, Q.Y., Li, G.H., and Zhao, P.J., 2021, Recent advances in the synthetic biology of natural drugs, Front. Bioeng. Biotechnol., 9, 691152.
[4] Wiraswati H.L., Fauziah, N., Pradini, G.W., Kurnia, D., Kodir, R.A., Berbudi, A., Arimdayu, A.R., Laelalugina, A., Supandi, S., and Ma'ruf, I.F., 2023, Breynia cernua: Chemical profiling of volatile compounds in the stem extract and its antioxidant, antibacterial, antiplasmodial and anticancer activity in vitro and in silico, Metabolites, 13 (2), 281.
[5] Gezici, S., and Şekeroğlu, N., 2019, Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents, Anticancer Agents Med. Chem., 19 (1), 101–111.
[6] Azzam, M.H., Fauziah, N., and Wiraswati, H.L., 2022, The anticancer effect of phytochemicals and potential of Breynia cernua: An overview, Biomed. Pharmacol. J., 15 (4), 2259–2278.
[7] Greenwell, M., and Rahman, P.K., 2015, Medicinal plants: Their use in anticancer treatment, Int. J. Pharm. Sci. Res., 6 (10), 4103–4112.
[8] Barbuti, A.M., and Chen, Z.S., 2015, Paclitaxel through the ages of anticancer therapy: Exploring its role in chemo-resistance and radiation therapy, Cancers, 7 (4), 2360–2371.
[9] Xu, X.H., Li, T., Fong, C.M., Chen, X., Chen, X.J., Wang, Y.T., Huang, M.Q., and Lu, J.J., 2016, Saponins from Chinese medicines as anticancer agents, Molecules, 21 (10), 1326.
[10] Faizan, S., Mohammed Abdo Mohsen, M., Amarakanth, C., Justin, A., Ravishankar Rahangdale, R., Raghu Chandrashekar, H., and Prashantha Kumar, B.R., 2024, Quinone scaffolds as potential therapeutic anticancer agents: Chemistry, mechanism of actions, structure-activity relationships and future perspectives, Res. Chem., 7, 101432.
[11] Cai, Y., Zhang, J., Chen, N.G., Shi, Z., Qiu, J., He, C., and Chen, M., 2017, Recent advances in anticancer activities and drug delivery systems of tannins, Med. Res. Rev., 37 (4), 665–701.
[12] Kamran, S., Sinniah, A., Abdulghani, M.A.M., and Alshawsh, M.A., 2022, Therapeutic potential of certain terpenoids as anticancer agents: A scoping review, Cancers, 14 (5), 1100.
[13] Shilpi, J.A., Saha, S., Chong, S.L., Nahar, L., Sarker, S.D., and Awang, K., 2016, Advances in chemistry and bioactivity of the genus Chisocheton Blume, Chem. Biodiversity, 13 (5), 483–503.
[14] Zhang, Y., and Xu, H., 2017, Recent progress in the chemistry and biology of limonoids, RSC Adv., 7 (56), 35191–35220.
[15] Chen, J., Fan, X., Zhu, J., Song, L., Li, Z., Lin, F., Yu, R., Xu, H., and Zi, J., 2018, Limonoids from seeds of Azadirachta indica A. Juss. and their cytotoxic activity, Acta Pharm. Sin. B, 8 (4), 639–644.
[16] Katja, D.G., Farabi, K., Nuraini, V.A., Nurlelasari, N., Hidayat, A.T., Mayanti, T., Harneti, D., and Supratman, U., 2016, A New 30-nor trijugin-type limonoid, chisotrijugin, from the bark of Chisocheton cumingianus (Meliaceae), Int. J. Chem., 8 (3), 30–34.
[17] Supratman, U., Salam, S., Naibaho, W., Fajar, M., Nurlelasari, N., Katja, D.G., Harneti, D., Maharani, R., Hidayat, A.T., Lesmana, R., Azlan Nafiah, M., and Shiono, Y., 2020, New cytotoxic limonoids from the stem bark of Chisocheton pentandrus (Blanco) Merr, Phytochem. Lett., 35, 63–67.
[18] Harneti, D., Salam, S., Nurlelasari, N., Maharani, R., Mayanti, T., Safari, A., Hidayat, A.T., Lesmana, R., Fajriah, S., Supratman, U., Prescott, T., Shiono, Y., 2023, Pentandricines F-H, cytotoxic limonoids from the stem bark of Chisocheton pentandrus (Blanco) Merr, Phytochem. Lett., 54, 119–124.
[19] Mohamad, K., Hirasawa, Y., Litaudon, M., Awang, K., Hadi, A.H.A., Takeya, K., Ekasari W., Widyawaruyanti, A., Zaini, N.C., and Morita, H., 2009, Ceramicines B–D, new antiplasmodial limonoids from Chisocheton ceramicus, Bioorg. Med. Chem., 17 (2), 727–30.
[20] Phongmaykin, J., Kumamoto, T., Ishikawa, T., Suttisri, R., and Saifah, E., 2008, A new sesquiterpene and other terpenoid constituents of Chisocheton penduliflorus, Arch. Pharmacal Res., 31 (1), 21–27.
[21] Tasyriq, M., Najmuldeen, I.A., In, L.L., Mohamad, K., Awang, K., and Hasima, N., 2012, 7α-Hydroxy-β-sitosterol from Chisocheton tomentosus induces apoptosis via dysregulation of cellular Bax/Bcl-2 ratio and cell cycle arrest by downregulating ERK1/2 activation, Evidence-Based Complementary Altern. Med., 2012 (1), 765316.
[22] Inada, A., Somekawa, M., Murata, H., Nakanishi, T., Tokuda, H., Nishino, H., Iwashima, A., Darnaedi, D., and Murata, J., 1993, Phytochemical studies on Meliaceous plants. VIII. Structures and inhibitory effects on Epstein‒Barr virus activation of triterpenoids from leaves of Chisocheton macrophyllus King, Chem. Pharm. Bull., 41 (3), 617–619.
[23] Yang, M.H., Wang, J.S., Luo, J.G., Wang, X.B., and Kong, L.Y., 2011, Chisopanins A‒K, 11 new protolimonoids from Chisocheton paniculatus and their anti-inflammatory activities, Bioorg. Med. Chem., 19 (4), 1409–1417.
[24] Chan, K.Y., Mohamad, K, Ooi A.J.A., Imiyabir, Z., and Chung, L.Y., 2012, Bioactivity-guided fractionation of the lipoxygenase and cyclooxygenase inhibiting constituents from Chisocheton polyandrus Merr, Fitoterapia, 83 (5), 961–967.
[25] Hoai, N.T., Duc, H.V., Raal, A., and Morita, H., 2018, A new limonoid from Chisocheton paniculatus fruit collected in Vietnam and its NO production inhibitory activity, Nat. Prod. Commun., 13 (10), 1255–1257.
[26] Bailly, C., 2024, Limonoids isolated from Chisocheton ceramicus Miq. and the antiadipogenic mechanism of action of ceramicine B, Arch Pharm., 357 (8), 2400160.
[27] Chong, S.L., Hematpoor, A., Hazni, H., Sofian-Azirun, M., Litaudon, M, Supratman, U., Murata, M., and Awang, K., 2019, Mosquito larvicidal limonoids from the fruits of Chisocheton erythrocarpus Hiern, Phytochem. Lett., 30, 69–73.
[28] Álvarez-Caballero, J.M., and Coy-Barrera, E., 2019, Chemical and antifungal variability of several accessions of Azadirachta indica A. Juss. from six locations across the Colombian Caribbean coast: Identification of antifungal azadirone limonoids, Plants, 8 (12), 555.
[29] Nurlelasari, N., Katja, D.G., Harneti, D., Wardayo, M.M., Supratman, U., and Awang, K., 2017, Limonoids from the seeds of Chisocheton macrophyllus, Chem. Nat. Compd., 53 (1), 83–87.
[30] Maneerat, W., Laphookhieo S., Koysomboon, S., and Chantrapromma K., 2008, Antimalarial, antimycobacterial and cytotoxic limonoids from Chisocheton siamensis, Phytomedicine, 15 (12), 1130–1134.
[31] Wong, C.P., Shimada, M., Nagakura, Y., Nogroho, A.E., Hirasawa, Y., Kaneda, T., Awang, K., Hadi, A.H.A., Mohamad, K., Shiro, M., and Morita, H., 2011, Ceramicines E—I, new limonoids from Chisocheton ceramicus, Chem. Pharm. Bull., 59 (3), 407–411.
[32] Supriatno, S., Nurlelasari, N., Herlina, T, Harneti, D., Maharani R., Hidayat, A.T., Mayanti, T., Supratman, U., Azmi M.N., and Shiono, Y., 2018, A new limonoid from stem bark of Chisocheton pentandrus (Meliaceae), Nat. Prod. Res., 32 (21), 2610–2616.
[33] Pettit, G.R., Barton, D.H.R., Herald, C.L., Polonsky, J, Schmidt, J.M., and Connolly, J.D., 1983, Evaluation of limonoids against the murine P388 lymphocytic leukemia cell line, J. Nat. Prod., 46 (3), 379–390.
[34] Luo, X., Yu, Z., Yue, B., Ren, J., Zhang, J., Mani, S., Wang, Z., and Dou, W., 2020, Obacunone reduces inflammatory signalling and tumour occurrence in mice with chronic inflammation-induced colorectal cancer, Pharm. Biol., 58 (1), 886–897.
[35] Nivetha, R., Arvindh, S., Baba, A.B., Gade, D.R., Gopal, G., Chitrathara, K., Reddy, K.P., Reddy, G.B., and Nagini, S., 2022, Nimbolide, a neem limonoid, inhibits angiogenesis in breast cancer by abrogating aldose reductase mediated IGF-1/PI3K/Akt signalling, Anti-Cancer Agents Med. Chem., 22 (14), 2619–2636.
[36] Yang, T., Wu, E., Zhu, X., Leng, Y., Ye, S., Dong, R., Liu, J., Zhong, J., Zheng, Y., Xu, W., Luo, J., Kong, L., and Zhang, H., 2022, TKF, a mexicanolide-type limonoid derivative, suppressed hepatic stellate cells activation and liver fibrosis through inhibition of the YAP/Notch3 pathway, Phytomedicine, 107, 154466.
[37] Chandel, S., Bhattacharya, A., Gautam, A., Zeng, W., Alka, O., Sachsenberg, T., Gupta, G.D., Narang, R.K., Ravichandiran, V., and Singh, R., 2024, Investigation of the anti-cancer potential of epoxyazadiradione in neuroblastoma: Experimental assays and molecular analysis, J. Biomol. Struct. Dyn., 42 (21), 11377–11395.
[38] Shi, Y.S., Zhang, Y., Li, H.T., Wu, C.H., El-Seedi, H.R., Ye, W.K., Wang, Z.W., Li, C.B., Zhang, X.F., and Kai, G.Y., 2020, Limonoids from Citrus: Chemistry, anti-tumor potential, and other bioactivities, J. Funct. Foods, 75, 104213.
[39] Obeagu, E.I., and Obeagu, G.U., 2024, Breast cancer: A review of risk factors and diagnosis, Medicine, 103 (3), e36905.
[40] Anwar, S.L., Raharjo, C.A., Herviastuti, R., Dwianingsih, E.K., Setyoheriyanto, D., Avanti, W.S., Choridah, L., Harahap, W.A., Darwito, D., Aryandono, T., and Wulaningsih, W., 2019, Pathological profiles and clinical management challenges of breast cancer emerging in young women in Indonesia: a hospital-based study, BMC Women's Health, 19 (1), 28.
[41] Livak, K.J., and Schmittgen, T.D., 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 25 (4), 402–408.
[42] Daina, A., Michielin, O., and Zoete, V., 2017, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (1), 42717.
[43] Eberhardt, J., Santos-Martins, D., Tillack, A.F., and Forli, S., 2021, AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings, J. Chem. Inf. Model., 61 (8), 3891–3898.
[44] Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and Ferrin, T.E., 2021, UCSF ChimeraX: Structure visualization for researchers, educators, and developers, Protein Sci., 30 (1), 70–82.
[45] Laskowski, R.A., and Swindells, M.B., 2011, LigPlot+: Multiple ligand‒protein interaction diagrams for drug discovery, J. Chem. Inf. Model., 51 (10), 2778–2786.
[46] Youssef, A.M.M., Maaty, D.A.M., and Al-Saraireh, Y.M., 2023, Phytochemistry and anticancer effects of Mangrove (Rhizophora mucronata Lam.) leaves and stems extract against different cancer cell lines, Pharmaceuticals, 16 (1), 4.
[47] Nagulapalli Venkata, K.C., Rathinavelu, A., Bishayee, A., 2018, Limonoids: Structure–activity relationship studies and anticancer properties, Stud. Nat. Prod. Chem., 59, 375–399.
[48] Crowley, L.C., Marfell, B.J., Scott, A.P., and Waterhouse, N.J., 2016, Quantitation of apoptosis and necrosis by Annexin V binding, propidium iodide uptake, and flow cytometry, Cold Spring Harb Protoc., 2016 (11), pdb.prot087288.
[49] Crozier, L., Foy, R., Mouery, B., Whitaker, R., Corno, A., Spanos, C., Ly, T., Gowen Cook, J., and Saurin, A.T., 2022, CDK4/6 inhibitors induce replication stress to cause long‐term cell cycle withdrawal, The EMBO J., 41 (6), e108599.
[50] Elshal, M., Eid, N., El-Sayed, I., El-Sayed, W., and Al-Karmalawy, A., 2021, Concanavalin-A shows synergistic cytotoxicity with tamoxifen via inducing apoptosis in estrogen receptor-positive breast cancer: In vitro and molecular docking studies, Pharm. Sci., 28 (1), 75–85.
[51] Huang, T.T., Lampert, E.J., Coots, C., and Lee, J.M., 2020, Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer, Cancer Treat. Rev., 86, 102021.
[52] Saleban, M., Harris, E.L., and Poulter, J.A., 2023, D-type cyclins in development and disease, Genes, 14 (7), 1445.
[53] Morley, K.L., Ferguson, P.J., and Koropatnick, J., 2007, Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells, Cancer Lett., 251 (1), 168–178.
[54] Kaku, Y., Tsuchiya, A., Kanno, T., and Nishizaki, T., 2015, Irinotecan induces cell cycle arrest, but not apoptosis or necrosis, in Caco-2 and CW2 colorectal cancer cell lines, Pharmacology, 95 (3-4), 154–159.
[55] Topacio, B.R., Zatulovskiy, E., Cristea, S., Xie, S., Tambo, C.S., Rubin, S.M., Sage, J., Kõivomägi, M., and Skotheim, J.M., 2019, Cyclin D-Cdk4,6 drives cell-cycle progression via the retinoblastoma protein's C-terminal helix, Mol. Cell, 74 (4), 758–770.e4.
[56] Qie, S., and Diehl, J.A., 2016, Cyclin D1, cancer progression, and opportunities in cancer treatment, J. Mol. Med., 94 (12), 1313–1326.
[57] Yang, Y., Wu, J., Cai, J., He, Z., Yuan, J., Zhu, X., Li, Y., Li, M., and Guan, H., 2015, PSAT1 regulates cyclin D1 degradation and sustains proliferation of non-small cell lung cancer cells, Int. J. Cancer, 136 (4), E39–E50.
[58] Abbas, S.E., George, R.F., Samir, E.M., Aref, M.M., and Abdel-Aziz, H.A., 2019, Synthesis and anticancer activity of some pyrido[2,3-d] pyrimidine derivatives as apoptosis inducers and cyclin-dependent kinase inhibitors, Future Med. Chem., 11 (18), 2395–2414.
[59] Wee, P., and Wang, Z., 2017, Epidermal growth factor receptor cell proliferation signaling pathways, Cancers, 9 (5), 52.
[60] Michalak, O., Cybulski, M., Szymanowski, W., Gornowicz, A., Kubiszewski, M., Ostrowska, K., Krzeczyński, P., Bielawski, K., Trzaskowski, B., and Bielawska, A., 2023, Synthesis, biological activity, ADME and molecular docking studies of novel ursolic acid derivatives as potent anticancer agents, Int. J. Mol. Sci., 24 (10), 8875.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.












