Biomass-Derived Supercapacitors Supercharged with MXene Integration
Syeda Sheeza Nadeem(1*), Afiten Rahmin Sanjaya(2), Munawar Khalil(3), Tribidasari Anggraningrum Ivandini(4)
(1) Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
(2) Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
(3) Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
(4) Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
(*) Corresponding Author
Abstract
Biomass-derived carbon, obtained from renewable organic materials, offers several advantages, including sustainability, cost-effectiveness, and excellent electrochemical properties, such as high energy and power densities, adjustable morphologies, and cycling stability. However, the limitation of carbon-based materials can be addressed through surface modification with layered materials such as, layered double hydroxides, metal dichalcogenides, graphene, vanadium pentoxide and the new emerging material MXene. This review highlights techniques particularly heteroatom doping and chemical or physical activation to further enhance the electrochemical performance of biomass-derived carbon as supercapacitors. It also examines the synthesis of MXenes, two-dimensional transition metal carbides and nitrides, known for high conductivity, structural stability, and versatile surface chemistry. Despite these advantages, MXenes face challenges such as self-oxidation, self-discharging, and nanosheets restacking, which limit long-term stability. The effective strategies including surface and interlayer modifications and optimized synthesis route, are explored to significantly improve the electrochemical performance MXene-based composites. Additionally, the enrichment of biomass waste and the role of MXenes in electrical double-layer (EDLCs) and pseudocapacitance are emphasized, with MXene offering continuous electron transport channels, high oxidation resistance, and structural stability. Ultimately, integrating biomass-derived carbon with MXenes offers promising pathway to develop high-performance, sustainable supercapacitors for efficient energy storage solutions in future applications.
Keywords
Full Text:
Full Text PDFReferences
[1] Simon, P., and Gogotsi, Y., 2008, Materials for electrochemical capacitors, Nat. Mater., 7 (11), 845–854.
[2] Lin, Z., Goikolea, E., Balducci, A., Naoi, K., Taberna, P.L., Salanne, M., Yushin, G., and Simon, P., 2018, Materials for supercapacitors: When Li-ion battery power is not enough, Mater. Today, 21 (4), 419–436.
[3] Iqbal, M.F., Nasir, F., Shabbir, F., Babar, Z.U.D., Saleem, M.F., Ullah, K., Sun, N., and Ali, F., 2025, Supercapacitors: An emerging energy storage system, Adv. Energy Sustainability Res., 6 (8), 2400412.
[4] Khalil, M., Gunlazuardi, J., Ivandini, T.A., and Umar, A., 2019, Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance, Renewable Sustainable Energy Rev., 113, 109246.
[5] Liu, D., Ni, K., Ye, J., Xie, J., Zhu, Y., and Song, L., 2018, Tailoring the structure of carbon nanomaterials toward high-end energy applications, Adv. Mater., 30 (48), 1802104.
[6] Ekechukwu, D.E., and Simpa, P., 2024, A comprehensive review of innovative approaches in renewable energy storage, Int. J. Appl. Res. Soc. Sci., 6 (6), 1133–1157.
[7] Larcher, D., and Tarascon, J.M., 2015, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7 (1), 19–29.
[8] Dominguez, N., Torres, B., Barrera, L.A., Rincon, J.E., Lin, Y., Chianelli, R.R., Ahsan, M.A., and Noveron, J.C., 2018, Bimetallic CoMoS composite anchored to biocarbon fibers as a high-capacity anode for Li-ion batteries, ACS Omega, 3 (8), 10243–10249.
[9] Erdiwansyah, E., Gani, A., Mamat, R., Bahagia, B., Nizar, M., Yana, S., Mat Yasin, M.H., Muhibbuddin, M., and Rosdi, S.M., 2024, Prospects for renewable energy sources from biomass waste in Indonesia, Case Stud. Chem. Environ. Eng., 10, 100880.
[10] Afridi, A.M., Aktary, M., Shaheen Shah, S., Mitu Sheikh, S.I., Jahirul Islam, G., Nasiruzzaman Shaikh, M., and Abdul Aziz, M., 2024, Advancing electrical engineering with biomass-derived carbon materials: Applications, innovations, and future directions, Chem. Rec., 24 (12), e202400144.
[11] Kumar, Y.A., Alagarasan, J.K., Ramachandran, T., Rezeq, M., Bajaber, M.A., Alalwiat, A.A., Moniruzzaman, M., and Lee, M., 2024, The landscape of energy storage: Insights into carbon electrode materials and future directions, J. Energy Storage, 86, 111119.
[12] Khandaker, T., Islam, T., Nandi, A., Anik, M.A.A.M., Hossain, M.S., Hasan, M.K., and Hossain, M.S., 2025, Biomass-derived carbon materials for sustainable energy applications: A comprehensive review, Sustainable Energy Fuels, 9 (3), 693–723.
[13] Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., and Ding, Y., 2009, Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 19 (3), 291–312.
[14] Shukla, A.K., 2001, Electrochemical power sources: 2. Fuel cells and supercapacitors, Resonance, 6 (8), 72–81.
[15] Hawari, N.H., Prayogi, A., Irmawati, Y., Persada, P.B., Ivandini, T.A., Zulfia, A., Judawisastra, H., Yan, Q., and Sumboja, A., 2024, Mn-deficient ZnMn2O4/Zn0.5Mn0.5Fe2O4 cathode for enhancing structural reversibility and stability of zinc-ion batteries, J. Energy Storage, 100, 113715.
[16] Liu, C., Li, F., Ma, L.P., and Cheng, H.M., 2010, Advanced materials for energy storage, Adv. Mater., 22 (8), E28–E62.
[17] Brisebois, P.P., and Siaj, M., 2020, Harvesting graphene oxide – years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation, J. Mater. Chem. C, 8 (5), 1517–1547.
[18] Bal, M., Tontuş, M.İ., and Tümer, M., 2025, Hybrid materials based on reduced graphene oxide: Synthesis and characterization of V and Ru metal complexes, J. Fluoresc., s10895-025-04184-3.
[19] Perişanoğlu, U., Kavaz Perişanoğlu, E., Kudaş, Z., Ekinci, D., Ismail, I., and Gür, E., 2025, Advanced flexible supercapacitors: Vertical 2D MoS2 and WS2 nanowalls on graphenated carbon nanotube cotton, Nanoscale, 17 (11), 6704–6717.
[20] Shinde, N.M., and Pumera, M., 2025, MXene-based nanocomposites for supercapacitors: Fundamentals and applications, Small Methods, 9 (7), 2401751.
[21] Ivandini, T.A., Ulfah, F.F., Nahda, D.P.N., Luhur, S.P., Sanjaya. A.R., Krisnandi Y.K., Sumboja, A., Zulfia, A., Ryu, K.S., and Akbar, Z.A., 2025, Hierarchical rod-like structure MnO2/NiCo-layered double hydroxide on nickel foam for a high-performance supercapacitor electrode, Mater. Res. Bull., 184, 113289.
[22] Sahoo, G., and Rout, C.S., 2025, MXene-transition metal chalcogenide hybrid materials for supercapacitor applications, Chem. Commun., 61 (35), 6439–6461.
[23] Singh, A., Lalotra, N., Shah, S.S., Rather, M.D., Lopez-Maldonado, E.A., Pathania, K., Abaszade, R.G., Stetsenko, M., and Arya, S., 2025, A comprehensive review on the synthesis and properties of MXenes for supercapacitor applications, ACS Appl. Energy Mater., 8 (8), 4884–4914.
[24] Kadam, S.A., Kadam, K.P., and Pradhan, N.R., 2024, Advancements in 2D MXene-based supercapacitor electrodes: Synthesis, mechanisms, electronic structure engineering, flexible wearable energy storage for real-world applications, and future prospects, J. Mater. Chem. A, 12 (29), 17992–18046.
[25] Pavithra Siddu, N.K., Jeong, S.M., and Rout, C.S., 2024, MXene-carbon based hybrid materials for supercapacitor applications, Energy Adv., 3 (2), 341–365.
[26] Khalil, M., Juandito, A.G., Djuhana, D., Priyono, B., Kadja, G.T.M., Mahyuddin, M.H., and Abdi, F.F., 2025, Assembly of Ti3C2 MXene and SBA-15 templated mesoporous NiFe2O4 as an anode for lithium-ion battery, FlatChem, 50, 100843.
[27] Sagita, F., Arcana, I.M., and Kadja, G.T.M., 2025, The role of MXene and MXene-based composite in enhancing lithium-sulfur battery performance, Inorg. Chem. Commun., 175, 114112.
[28] Abraham, D.S., Vinoba, M., and Bhagiyalakshmi, M., 2025, Enhanced charge storage using in-situ grown NiGa-layered double hydroxide on V4C3Tx MXene for supercapacitor applications, J. Power Sources, 639, 236688.
[29] Ramachandra, M., Sunajadevi, K.R.P., and Pinheiro, D., 2025, Exploring the influence of etching media on the electrochemical behavior of Cr2CTx MXene, Adv. Sustainable Syst., 9 (4), 2400865.
[30] Sutar, S.D., and Swami, A., 2025, A Ti3C2Tx MXene/alginic acid-derived mesoporous carbon nanocomposite as a potential electrode material for coin-cell asymmetric supercapacitors, Nanoscale, 17 (8), 4750–4764.
[31] Song, C., Long, Y., Wan, M., Wang, Y., Lu, B., Cheng, Z., Lyu, X., Cao, H., Liu, H., and An, X., 2025, Flexible composite films constructed of MXene/cellulose nanofibers/natural fiber-based activated carbon fibers for high-performance flexible supercapacitors, Int. J. Biol. Macromol., 309, 142838.
[32] Bhat, M.Y., Adeosun, W.A., Prenger, K., Samad, Y.A., Liao, K., Naguib, M., Mao, S., and Qurashi, A., 2025, Frontiers of MXenes-based hybrid materials for energy storage and conversion applications, Adv. Compos. Hybrid Mater., 8 (1), 52.
[33] Ghosh, S., and Subudhi, S., 2022, Developments in fuel cells and electrochemical batteries using nanoparticles and nanofluids, Energy Storage, 4 (3), e288.
[34] Wayu, M., 2021, Manganese oxide carbon-based nanocomposite in energy storage applications, Solids, 2 (2), 232–248.
[35] González, A., Goikolea, E., Barrena, J.A., and Mysyk, R., 2016, Review on supercapacitors: Technologies and materials, Renewable Sustainable Energy Rev., 58, 1189–1206.
[36] Samantara, A.K., and Ratha, S., 2018, Materials Development for Active/Passive Components of a Supercapacitor, Springer, Cham, Switzerland.
[37] Loganathan, N.N., Perumal, V., Pandian, B.R., Atchudan, R., Edison, T.N.J.I., and Ovinis, M., 2022, Recent studies on polymeric materials for supercapacitor development, J. Energy Storage, 49, 104149.
[38] Miller, J.R., and Simon, P., 2008, Electrochemical capacitors for energy management, Science, 321 (5889), 651–652.
[39] Shown, I., Ganguly, A., Chen, L.C., and Chen, K.H., 2015, Conducting polymer-based flexible supercapacitor, Energy Sci. Eng., 3 (1), 2–26.
[40] Vinodh, R., Sasikumar, Y., Kim, H.J., Atchudan, R., and Yi, M., 2021, Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: A critical review, J. Ind. Eng. Chem., 104, 155–171.
[41] Chen, X., Paul, R., and Dai, L., 2017, Carbon-based supercapacitors for efficient energy storage, Natl. Sci. Rev., 4 (3), 453–489.
[42] Wu, Y., and Ran, F., 2017, Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors, J. Power Sources, 344, 1–10.
[43] Zhu, X., Zeng, Y., Zhao, X., Liu, D., Lei, W., and Lu, S., 2025, Biomass-derived carbon and their composites for supercapacitor applications: Sources, functions, and mechanisms, EcoEnergy, 3 (3), e70000.
[44] Sundriyal, S., Shrivastav, V., Kaur, H., Mishra, S., and Deep, A., 2018, High-performance symmetrical supercapacitor with a combination of a ZIF-67/rGO composite electrode and a redox additive electrolyte, ACS Omega, 3 (12), 17348–17358.
[45] Ranaweera, C.K., Wang, Z., Alqurashi, E., Kahol, P.K., Dvornic, P.R., Gupta, B.K., Ramasamy, K., Mohite, A.D., Guptae, G., and Gupta, R.K., 2016, Highly stable hollow bifunctional cobalt sulfides for flexible supercapacitors and hydrogen evolution, J. Mater. Chem. A, 4 (23), 9014–9018.
[46] Wu, Q., He, T., Zhang, Y., Zhang, J., Wang, Z., Liu, Y., Zhao, L Wua, Y., and Ran, F., 2021, Cyclic stability of supercapacitors: Materials, energy storage mechanism, test methods, and device, J. Mater. Chem. A, 9 (43), 24094–24147.
[47] Choudhary, N., Li, C., Moore, J., Nagaiah, N., Zhai, L., Jung, Y., and Jayan, T., 2017, Asymmetric supercapacitor electrodes and devices, Adv. Mater., 29 (21), 1605336.
[48] Liu, L., Niu, Z., and Chen, J., 2017, Design and integration of flexible planar micro-supercapacitors, Nano Res., 10 (5), 1524–1544.
[49] Jiang, Y., and Liu, J., 2019, Definitions of pseudocapacitive materials: A brief review, Energy Environ. Mater., 2 (1), 30–37.
[50] Venkateshalu, S., and Grace, A.N., 2020, Ti3C2Tx MXene and vanadium nitride/porous carbon as electrodes for asymmetric supercapacitors, Electrochim. Acta, 341, 136035.
[51] Yang, P., and Mai, W., 2014, Flexible solid-state electrochemical supercapacitors, Nano Energy, 8, 274–290.
[52] Zuo, W., Li, R., Zhou, C., Li, Y., Xia, J., and Liu, J., 2017, Battery-supercapacitor hybrid devices: Recent progress and future prospects, Adv. Sci., 4 (7), 1600539.
[53] Han, C., Li, H., Shi, R., Xu, L., Li, J., Kang, F., and Li, B., 2018, Nanostructured anode materials for non-aqueous lithium ion hybrid capacitors, Energy Environ. Mater., 1 (2), 75–87.
[54] Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., and Smith, D.L., 2021, Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization, Renewable Sustainable Energy Rev., 139, 110691.
[55] Shanmuga Priya, M., Divya, P., and Rajalakshmi, R., 2020, A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors, Sustainable Chem. Pharm., 16, 100243.
[56] Lu, H., and Zhao, X.S., 2017, Biomass-derived carbon electrode materials for supercapacitors, Sustainable Energy Fuels, 1 (6), 1265–1281.
[57] Jin, Z., Yan, X., Yu, Y., and Zhao, G., 2014, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors, J. Mater. Chem. A, 2 (30), 11706–11715.
[58] Chen, M., Kang, X., Wumaier, T., Dou, J., Gao, B., Han, Y., Xu, G., Liu, Z., and Zhang, L., 2013, Preparation of activated carbon from cotton stalk and its application in supercapacitor, J. Solid State Electrochem., 17 (4), 1005–1012.
[59] Qiu, D., Kang, C., Gao, A., Xie, Z., Li, Y., Li, M., Wang, F., and Yang, R., 2019, Sustainable low-temperature activation to customize pore structure and heteroatoms of biomass-derived carbon enabling unprecedented durable supercapacitors, ACS Sustainable Chem. Eng., 7 (17), 14629–14638.
[60] Li, Y., Li, Z., Xing, B., Li, H., Ma, Z., Zhang, W., Reubroycharoen, P., and Wang, S., 2021, Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping, J. Anal. Appl. Pyrolysis, 155, 105072.
[61] Subramanian, V., Luo, C., Stephan, A.M., Nahm, K.S., Thomas, S., and Wei, B., 2007, Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C, 111 (20), 7527–7531.
[62] Liu, C., Han, G., Chang, Y., Xiao, Y., Li, M., Zhou, W., Fu, D., and Hou, W., 2016, Properties of porous carbon derived from cornstalk core in high-performance electrochemical capacitors, ChemElectroChem, 3 (2), 323–331.
[63] Rufford, T.E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z., and Lu, G.Q., 2010, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources, 195 (3), 912–918.
[64] Farma, R., Deraman, M., Awitdrus, A., Talib, I.A., Taer, E., Basri, N.H., Manjunatha, J.G., Ishak, M.M., Dollah, B.N.M., and Hashmi, S.A., 2013, Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, Bioresour. Technol., 132, 254–261.
[65] Gao, Y., Li, L., Jin, Y., Wang, Y., Yuan, C., Wei, Y., Chen, G., Ge, J., and Lu, H., 2015, Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor, Appl. Energy, 153, 41–47.
[66] Karthikeyan, K., Amaresh, S., Lee, S.N., Sun, X., Aravindan, V., Lee, Y.G., and Lee, Y.S., 2014, Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons, ChemSusChem, 7 (5), 1435–1442.
[67] Rajivgandhi, P., Thirumal, V., Sekar, A., and Kim, J., 2025, Biomass-derived activated porous carbon from foxtail millet husk to utilizing high-performance symmetric supercapacitor applications, Nanomaterials, 15 (8), 575.
[68] Borghei, M., Lehtonen, J., Liu, L., and Rojas, O.J., 2018, Advanced biomass-derived electrocatalysts for the oxygen reduction reaction, Adv. Mater., 30 (24), 1703691.
[69] Zhang, G., Liu, X., Wang, L., and Fu, H., 2022, Recent advances of biomass derived carbon-based materials for efficient electrochemical energy devices, J. Mater. Chem. A, 10 (17), 9277–9307.
[70] Zhang, X., Yang, W., and Blasiak, W., 2011, Modeling study of woody biomass: Interactions of cellulose, hemicellulose, and lignin, Energy Fuels, 25 (10), 4786–4795.
[71] Chen, J., Wang, Y., Xie, J., Jia, C.Q., Song, C., Wang, P., and Li, H., 2024, Cotton fiber-derived ultrafine activated carbon fiber for supercapacitor electrode: The effect of fibrillation, Int. J. Biol. Macromol., 282, 137475.
[72] Wang, Y., Lu, C., Cao, X., Wang, Q., Yang, G., and Chen, J., 2022, Porous carbon spheres derived from hemicelluloses for supercapacitor application, Int. J. Mol. Sci., 23 (13), 7101.
[73] Park, H.W., Ahn, H.J., and Roh, K.C., 2024, Recent advances in preparation and supercapacitor applications of lignin-derived porous carbon: A review, J. Electrochem. Sci. Technol., 15 (1), 111–131.
[74] Tang, Y., Lu, L., Zang, X., Wang, B., and Ye, X., 2023, Tailored properties of carbon for supercapacitors by blending lignin and cellulose to mimic biomass as carbonaceous precursor, ChemSusChem, 16 (17), e202300357.
[75] Leng, C., Sun, K., Li, J., and Jiang, J., 2017, From dead pine needles to O, N codoped activated carbons by a one-step carbonization for high rate performance supercapacitors, ACS Sustainable Chem. Eng., 5 (11), 10474–10482.
[76] Deng, J., Xiong, T., Wang, H., Zheng, A., and Wang, Y., 2016, Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons, ACS Sustainable Chem. Eng., 4 (7), 3750–3756.
[77] Wu, C., Tindall, G.W., Fitzgerald, C.L., Thies, M.C., and Roberts, M.E., 2025, Decoupling the role of lignin, cellulose/hemi-cellulose, and ash on ZnCl2-activated carbon pore structure, Mater. Adv., 6 (4), 1431–1441.
[78] Yunarti, R.T., Safitri, T.N., Dimonti, L.C.C., Aulia, G., Khalil, M., and Ridwan, M., 2022, Facile synthesis of composite between titania nanoparticles with highly exposed (001) facet and coconut shell-derived graphene oxide for photodegradation of methylene blue, J. Phys. Chem. Solids, 160, 110357.
[79] Rahmawati, F., Aini, N., Ridwan, Q., Paramartha, I.G.A.F., Putri, D.O.A., Saputri, D.D., Nugrahaningtyas, K.D., Heraldy, E., Hidayat, Y., Nurcahyo, I.F., and Ivandini, T.A., 2025, N/S-doped carbon electrode derived from paper waste as a sustainable electric double-layer capacitor, Int. J. Renewable Energy Dev., 14 (3), 392–403.
[80] Mariana, M., Abdul Khalil, H.P.S., Mistar, E.M., Yahya, E.B., Alfatah, T., Danish, M., and Amayreh, M., 2021, Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption, J. Water Process Eng., 43, 102221.
[81] Díez, N., Sevilla, M., and Fuertes, A.B., 2021, Synthesis strategies of templated porous carbons beyond the silica nanocasting technique, Carbon, 178, 451–476.
[82] He, H., Zhang, R., Zhang, P., Wang, P., Chen, N., Qian, B., Zhang, L., Yu, J., and Dai, B., 2023, Functional carbon from nature: Biomass-derived carbon materials and the recent progress of their applications, Adv. Sci., 10 (16), 2205557.
[83] Nahda, D.P.N., Sanjaya. A.R., Rahmawati, F., Zulfia, A., Sumbodja, A., Pramadewandaru, R.K., Krisnandi, Y.K., Akbar, Z.A., and Ivandini, T.A., 2025, Synthesis of mesoporous carbon from banana peels with silica gel 60 as the hard templates, RSC. Adv., 15 (6), 4536–4545.
[84] Raymundo-Piñero, E., Leroux, F., and Béguin, F., 2006, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer, Adv. Mater., 18 (14), 1877–1882.
[85] Biswal, M., Banerjee, A., Deo, M., and Ogale, S., 2013, From dead leaves to high energy density supercapacitors, Energy Environ. Sci., 6 (4), 1249–1259.
[86] Liu, S., Zhao, Y., Zhang, B., Xia, H., Zhou, J., Xie, W., and Li, H., 2018, Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes, J. Power Sources, 381, 116–126.
[87] Titirici, M.M., White, R.J., Falco, C., and Sevilla, M., 2012, Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage, Energy Environ. Sci., 5 (5), 6796–6822.
[88] Wang, H., Li, Z., and Mitlin, D., 2014, Tailoring biomass-derived carbon nanoarchitectures for high-performance supercapacitors, ChemElectroChem, 1 (2), 332–337.
[89] Guo, Y., Chen, T., and Zou, Y., 2023, Formation of MXene-derived/NiCoFe-LDH heterostructures for supercapacitor applications, Materials, 16 (4), 1643.
[90] Wang, C., Wu, D., Wang, H., Gao, Z., Xu, F., and Jiang, K., 2017, Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors, J. Power Sources, 363, 375–383.
[91] Sanjaya, A.R., Amanda, S., Ivandini, T.A., Abnisa, F., Kadja, G.T.M., Pratomo, U., Alias, Y., and Khalil, M., 2023, Fabrication of graphene oxide-decorated mesoporous NiFe2O4 as an electrocatalyst in the hydrogen gas evolution reaction, Designs, 7 (1), 26.
[92] Sun, L., Gong, Y., Li, D., and Pan, C., 2022, Biomass-derived porous carbon materials: Synthesis, designing, and applications for supercapacitors, Green Chem., 24 (10), 3864–3894.
[93] Zhang, L.L., and Zhao, X.S., 2009, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38 (9), 2520–2531.
[94] Dutta, S., Bhaumik, A., and Wu, K.C.W., 2014, Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications, Energy Environ. Sci., 7 (11), 3574–3592.
[95] Lee, D.W., Jin, M.H., Park, J.H., Lee, Y.J., and Choi, Y.C., 2018, Flexible synthetic strategies for lignin-derived hierarchically porous carbon materials, ACS Sustainable Chem. Eng., 6 (8), 10454–10462.
[96] Nuriskasari, I., Syahrial, A.Z., Ivandini, T.A., Sumboja, A., Priyono, B., Yan, Q., Destyorini, F., and Priyono, S., 2024, Synthesis of graphitic carbon from empty palm oil fruit bunches through single-step graphitization process using K2FeO4-KOH catalyst as lithium ion battery anode, Results Eng., 24, 103273.
[97] Wang, J., Nie, P., Ding, B., Dong, S., Hao, X., Dou, H., and Zhang, H., 2017, Biomass derived carbon for energy storage devices, J. Mater. Chem. A, 5 (6), 2411–2428.
[98] Zhou, S., Zhou, L., Zhang, Y., Sun, J., Wen, J., and Yuan, Y., 2019, Upgrading earth-abundant biomass into three-dimensional carbon materials for energy and environmental applications, J. Mater. Chem. A, 7 (9), 4217–4229.
[99] Song, Y., Li, Z., Guo, K., and Shao, T., 2016, Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials, Nanoscale, 8 (34), 15671–15680.
[100] Li, Z., Guo, D., Liu, Y., Wang, H., and Wang, L., 2020, Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors, Chem. Eng. J., 397, 125418.
[101] Putri, Y.M.T.A., Gunlazuardi, J., and Ivandini, T.A., 2022, Electrochemical preparation of highly oriented microporous structure nickel oxide films as promising electrodes in urea oxidation, Chem. Lett., 51 (2), 135–138.
[102] Sun, L., Fu, Q., and Pan, C., 2021, Hierarchical porous “skin/skeleton”-like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors, J. Hazard. Mater., 410, 124565.
[103] Deng, S., Zhang, J., Lin, L., Liu, J., and Shi, J., 2025, Freeze-thaw synergistic salt template prepared self-supporting MXene/wood-derived porous carbon electrode for supercapacitors, J. Energy Storage, 106, 114846.
[104] Wang, Q., Yuan, H., Zhang, M., Yang, N., Cong, S., Zhao, H., Wang, X., Xiong, S., Li, K., and Zhou, A., 2023, A highly conductive and supercapacitive MXene/N-CNT electrode material derived from a MXene-Co-melamine precursor, ACS Appl. Electron. Mater., 5 (5), 2506–2517.
[105] Pogorielov, M., Smyrnova, K., Kyrylenko, S., Gogotsi, O., Zahorodna, V., and Pogrebnjak, A., 2021, MXenes—A new class of two-dimensional materials: Structure, properties and potential applications, Nanomaterials, 11 (12), 3412.
[106] Kadja, G.T.M., Natalya, S.A.C., Khalil, M., Jiwanti, P.K., Hermawati, E., and Nurfani, E., 2023, Unique TiO2-enveloped Ti3C2 composites for efficient visible light-assisted photoreduction of bicarbonate, Chem. Phys. Lett., 823, 140541.
[107] Papadopoulou, K.A., Chroneos, A., Parfitt, D., and Christopoulos, S.R.G., 2020, A perspective on MXenes: Their synthesis, properties, and recent applications, J. Appl. Phys., 128 (17), 170902.
[108] Lamiel, C., Hussain, I., Warner, J.H., and Zhang, K., 2023, Beyond Ti-based MXenes: A review of emerging non-Ti based metal-MXene structure, properties, and applications, Mater. Today, 63, 313–338.
[109] Akhter, R., and Maktedar, S.S., 2023, MXenes: A comprehensive review of synthesis, properties, and progress in supercapacitor applications, J. Materiomics, 9 (6), 1196–1241.
[110] Ma, C., Ma, M.G., Si, C., Ji, X.X., and Wan, P., 2021, Flexible MXene-based composites for wearable devices, Adv. Funct. Mater., 31 (22), 2009524.
[111] Huang, S., Xiang, G., and Mochalin, V.N., 2025, Formation of hydrocarbons and carbon oxides in MXene reactions with water under varying oxidative conditions, Nanoscale, 17 (16), 9937–9946.
[112] Qian, W., Si, Y., Chen, P., Tian, C., Wang, Z., Li, P., Li, S., and He, D., 2024, Enhanced oxidation-resistant and conductivity in MXene films with seamless heterostructure, Small, 20 (49), 2403149.
[113] Kumar, S., Kumari, N., Singh, T., and Seo, Y., 2024, Shielding 2D MXenes against oxidative degradation: Recent advances, factors and preventive measures, J. Mater. Chem. C, 12 (23), 8243–8281.
[114] Thomas, S.A., Patra, A., Al-Shehri, B.M., Selvaraj, M., Aravind, A., and Rout, C.S., 2022, MXene based hybrid materials for supercapacitors: Recent developments and future perspectives, J. Energy Storage, 55, 105765.
[115] Thakur, A., Chandran, B.S.N., Davidson, K., Bedford, A., Fang, H., Im, Y., Kanduri, V., Wyatt, B.C., Nemani, S.K., Poliukhova, V., Kumar, R., Fakhraai, Z., and Anasori, B., 2023, Step-by-step guide for synthesis and delamination of Ti3C2Tx MXene, Small Methods, 7 (8), 2300030.
[116] Murugesan, M., Nagavenkatesh, K.R., Devendran, P., Nallamuthu, N., Sambathkumar, C., and Krishna Kumar, M., 2024, Scalable synthesis of 2D-layered Ti3C2 MXene by HF etching method; electrochemical investigations and device fabrication to enhancing capacitive nature, Mater. Sci. Eng., B, 309, 117607.
[117] Guan, Y., Jiang, S., Cong, Y., Wang, J., Dong, Z., Zhang, Q., Yuan, G., Li, Y., and Li, X., 2020, A hydrofluoric acid-free synthesis of 2D vanadium carbide (V2C) MXene for supercapacitor electrodes, 2D Mater., 7 (2), 025010.
[118] Zhang, X., Huang, X., Zhang, Y., Xia, L., Zhong, B., Zhang, X., Tian, N., Zhang, T., and Wen, G., 2016, A free-standing, flexible and bendable lithium-ion anode materials with improved performance, RSC Adv., 6 (112), 110733–110740.
[119] Hu, W., Yang, M., Fan, T., Li, Z., Wang, Y., Li, H., Zhu, G., Li, J., Jin, H., and Yu, L., 2023, A simple, efficient, fluorine-free synthesis method of MXene/Ti3C2Tx anode through molten salt etching for sodium-ion batteries, Battery Energy, 2 (5), 20230021.
[120] Zhang, T., Pan, L., Tang, H., Du, F., Guo, Y., Qiu, T., and Yang, J., 2017, Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: Enhanced exfoliation and delamination, J. Alloys Compd., 695, 818–826.
[121] Jothibas, M., Srinivasan, S., Nesakumar, N., and Paulson, E., 2025, DMSO delaminated titanium carbide MXene with exalted cyclability for sodium ion batteries, J. Alloys Compd., 1020, 179301.
[122] Chaudhari, N.K., Jin, H., Kim, B., San Baek, D., Joo, S.H., and Lee, K., 2017, MXene: An emerging two-dimensional material for future energy conversion and storage applications, J. Mater. Chem. A, 5 (47), 24564–24579.
[123] Xu, C., Wang, L., Liu, Z., Chen, L., Guo, J., Kang, N., Ma, X.L., Cheng, H.M., and Ren, W., 2015, Large-area high-quality 2D ultrathin Mo2C superconducting crystals, Nat. Mater., 14 (11), 1135–1141.
[124] Joshi, S., Wang, Q., Puntambekar, A., and Chakrapani, V., 2017, Facile synthesis of large area two-dimensional layers of transition-metal nitride and their use as insertion electrodes, ACS Energy Lett., 2 (6), 1257–1262.
[125] Zhang, Y., Guo, B., Hu, L., Xu, Q., Li, Y., Liu, D., and Xu, M., 2018, Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage, J. Alloys Compd., 732, 448–453.
[126] Zalba, B., Marín, J.M., Cabeza, L.F., and Mehling, H., 2003, Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications, Appl. Therm. Eng., 23 (3), 251–283.
[127] Hasanah, R., Romdoni, Y., Fauzia, V., Arifutzzaman, A., Hussin, F., Aroua, M.K., and Khalil, M., 2025, Two-dimension MoS2/Ti3C2MXene nanocomposite for an efficient hydrogen evolution reaction in alkaline media, Mater. Res. Bull., 190, 113514.
[128] Kadja, G.T.M., Ilmi, M.M., Azhari, N.J., Febrianti, A., Siregar, J.J.M., Nurdini, N., Pratomo, U., Khalil, M., and Irkham, I., 2023, MXene-based nanocomposite for electrocatalytic reduction of CO2: Experimental and theoretical results, FlatChem, 38, 100481.
[129] Yang, J., Bao, W., Jaumaux, P., Zhang, S., Wang, C., and Wang, G., 2019, MXene-based composites: Synthesis and applications in rechargeable batteries and supercapacitors, Adv. Mater. Interfaces, 6 (8), 1802004.
[130] Deng, Q., Zhao, X., Zhu, Q., Bo, M., and Feng, Y., 2021, Reinforced dielectric response in polymer/V2C MXene composite high-insulation films enabled through dispersing ionic liquid, J. Electroceram., 46 (3), 124–130.
[131] Xiao, Y., Hwang, J.Y., and Sun, Y.K., 2016, Transition metal carbide-based materials: Synthesis and applications in electrochemical energy storage, J. Mater. Chem. A, 4 (27), 10379–10393.
[132] Zhang, Y., Feng, Z., Wang, X., Hu, H., and Wu, M., 2023, MXene/carbon composites for electrochemical energy storage and conversion, Mater. Today Sustainability, 22, 100350.
[133] Kim, S.K., Kim, S.A., Han, Y.S., and Jung, K.H., 2024, Supercapacitor performance of MXene-coated carbon nanofiber electrodes, C, 10 (2), 32.
[134] Dharmasiri, B., Usman, K.A.S., Qin, S.A., Razal, J.M., Tran, N.T., Coia, P., Harte, T., and Henderson, L.C., 2023, Ti3C2Tx MXene coated carbon fibre electrodes for high performance structural supercapacitors, Chem. Eng. J., 476, 146739.
[135] Putri, Y.M.T.A., Syauqi, M.I., Rahmawati, I.R., Aliyah, A., Sanjaya, A.R., and Ivandini, T.A., 2024, Advancements in Ni-based catalysts for direct urea fuel cells: A comprehensive review, ChemElectroChem, 11 (5), e202300637.
[136] Wang, X., Shen, X., Gao, Y., Wang, Z., Yu, R., and Chen, L., 2015, Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2Tx, J. Am. Chem. Soc., 137 (7), 2715–2721.
[137] Wu, B., Li, M., Mazánek, V., Liao, Z., Ying, Y., Oliveira, F.M., Dekanovsky, L., Jan, L., Hou, G., Antonatos, N., Wei, Q., Li, M., Pal, B., He, J., Koňáková, D., Vejmělková, E., and Sofer, Z., 2024, In situ vanadium-deficient engineering of V2C MXene: A pathway to enhanced zinc-ion batteries, Small Methods, 8 (9), 2301461.
[138] Yan, J., Ren, C.E., Maleski, K., Hatter, C.B., Anasori, B., Urbankowski, P., Sarycheva, A., and Gogotsi, Y., 2017, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance, Adv. Funct. Mater., 27 (30), 1701264.
[139] Wang, Z., Qin, S., Seyedin, S., Zhang, J., Wang, J., Levitt, A., Li, N., Haines, C., Ovalle-Robles, R., Lei, W., Gogotsi, Y., Baughman, R.H., and Razal, R.M., 2018, High-performance biscrolled MXene/carbon nanotube yarn supercapacitors, Small, 14 (37), 1802225.
[140] Yu, L., Hu, L., Anasori, B., Liu, Y.T., Zhu, Q., Zhang, P., Gogotsi, Y., and Xu, B., 2018, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors, ACS Energy Lett., 3 (7), 1597–1603.
[141] Levitt, A.S., Alhabeb, M., Hatter, C.B., Sarycheva, A., Dion, G., and Gogotsi, Y., 2019, Electrospun MXene/carbon nanofibers as supercapacitor electrodes, J. Mater. Chem. A, 7 (1), 269–277.
[142] Sun, L., Song, G., Sun, Y., Fu, Q., and Pan, C., 2020, MXene/N-doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors, ACS Appl. Mater. Interfaces, 12 (40), 44777–44788.
[143] Li, H., Chen, R., Ali, M., Lee, H., and Ko, M.J., 2020, In situ grown MWCNTs/MXenes nanocomposites on carbon cloth for high-performance flexible supercapacitors, Adv. Funct. Mater., 30 (47), 2002739.
[144] Liang, W., and Zhitomirsky, I., 2022, MXene-polypyrrole electrodes for asymmetric supercapacitors, Electrochim. Acta, 406, 139843.
[145] Yang, K., Luo, M., Zhang, D., Liu, C., Li, Z., Wang, L., Chen, W., and Zhou, X., 2022, Ti3C2Tx/carbon nanotube/porous carbon film for flexible supercapacitor, Chem. Eng. J., 427, 132002.
[146] Tang, Y., Zhu, J., Wu, W., Yang, C., Lv, W., and Wang, F., 2017, Synthesis of nitrogen-doped two-dimensional Ti3C2 with enhanced electrochemical performance, J. Electrochem. Soc., 164 (4), A923.
[147] Yue, Y., Liu, N., Ma, Y., Wang, S., Liu, W., Luo, C., Zhang, H., Cheng, F., Rao, J., Hu, X., Su, J., and Gao, Y., 2018, Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel, ACS Nano, 12 (5), 4224–4232.
[148] Wang, Y., Xu, T., Liu, K., Zhang, M., Cai, X.M., and Si, C., 2024, Biomass-based materials for advanced supercapacitor: Principles, progress, and perspectives, Aggregate, 5 (1), e428.
[149] Putra, M.B.S., Aliyah, A., Sanjaya, A.R., Pramadewandaru, R.K., Chung, H., and Ivandini, T.A., 2024, Preparation of β-Ni(OH)2 nanosheet–modified glassy carbon for pseudocapacitors, Makara J. Sci., 28 (2), 174–184.
[150] Rajasekaran, S.J., Grace, A.N., Jacob, G., Alodhayb, A., Pandiaraj, S., and Raghavan, V., 2023, Investigation of different aqueous electrolytes for biomass-derived activated carbon-based supercapacitors, Catalysts, 13 (2), 286.
[151] Lahrar, E.H., Simon, P., and Merlet, C., 2021, Carbon–carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance, J. Chem. Phys., 155 (18), 184703.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.











