Study of Potential α-Glucosidase Inhibitor from Tithonia diversifolia: In Vitro, Pharmacokinetics, Toxicology, and Molecular Docking

https://doi.org/10.22146/ijc.103111

Daniel Alfarado(1), Shaum Shiyan(2), Ferlinahayati Ferlinahayati(3*)

(1) Magister of Chemistry Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Jl. Raya Palembang Prabumulih Km 32, Ogan Ilir 30622, South Sumatera, Indonesia
(2) Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Jl. Raya Palembang Prabumulih Km 32, Ogan Ilir 30622, South Sumatera, Indonesia
(3) Magister of Chemistry Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Jl. Raya Palembang Prabumulih Km 32, Ogan Ilir 30622, South Sumatera, Indonesia
(*) Corresponding Author

Abstract


The kipahit plant (Tithonia diversifolia) is commonly used in traditional medicine to treat various diseases, particularly diabetes. Investigating the bioactive compounds of T. diversifolia as α-glucosidase enzyme inhibitors is very promising to be carried out for antidiabetic drug development. A combination of in vitro and in silico studies was conducted to determine the inhibitory interaction of these compounds. In vitro assay was performed using the spectrophotometry method on methanol extracts and revealed that the stems (IC50 = 105.0 ppm) exhibited higher bioactivity than the leaves (IC50 > 500 ppm). Metabolite profiling of the methanol extract of the T. diversifolia stems revealed 94 compounds, which continued for in silico methods (pharmacokinetics and toxicology, followed by molecular docking with flexible-rigid method) for antidiabetic activity and drug-likeness parameters. Among the identified compounds, eight showed promise as drug candidates for inhibiting the α-glucosidase enzyme. The compound 1-(7-hydroxy-2-(hydroxymethyl)-2-methyl-2H-chromen-6-yl)ethanone was the most effective candidate among the eight candidates, based on its high similarity liked positive control, the lowest binding affinity value (−7.739 kcal/mol), and the inhibition constant (97.0 μM). The research findings suggested that the compounds in T. diversifolia had the potential to inhibit the α-glucosidase enzyme and could be developed into antidiabetic drugs.

Keywords


Tithonia diversifolia (kipahit); metabolites profiling; α-glucosidase enzyme; pharmacokinetics; molecular docking



References

[1] Wahidin, M., Achadi, A., Besral, B., Kosen, S., Nadjib, M., Nurwahyuni, A., Ronoatmodjo, S., Rahajeng, E., Pane, M., and Kusuma, D., 2024, Projection of diabetes morbidity and mortality till 2045 in Indonesia based on risk factors and NCD prevention and control programs, Sci. Rep., 2024, 14 (1), 5424.

[2] Lu, H., Xie, T., Wu, Q., Hu, Z., Luo, Y., and Luo, F., 2023, Alpha-glucosidase inhibitory peptides: Sources, preparations, identifications, and action mechanisms, Nutrients, 15 (19), 4267.

[3] Dirir, A.M., Daou, M., Yousef, A.F., and Yousef, L.F., 2022, A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes, Phytochem. Rev., 21 (4), 1049–1079.

[4] Derosa, G., and Maffioli, P., 2012, α-Glucosidase inhibitors and their use in clinical practice, Arc. Med. Sci., 8 (5), 899–906.

[5] Ferlinahayati, F., Alfarado, D., Eliza, E., and Untari, B., 2020, α-Glucosidase inhibitory and a leptospermone derivative from Rhodomyrtus tomentosa, Indones. J. Chem., 20 (2), 307–313.

[6] Rahman, N.F., Nursamsiar, N., Megawati, M., Handayani, H., and Suares, C.A.M., 2021, Total phenolic and flavonoid contents and antioxidant activity of kembang bulan leaves (Tithonia diversifolia (Hemsley) A. Gray), IJPST, 1 (1), 57–65.

[7] Ngenge Tamfu, A., Roland, N., Munvera Mfifen, A., Kucukaydin, S., Gaye, M., Veronica Botezatu, A., Emin Duru, M., and Mihaela Dinica, R., 2022, Phenolic composition, antioxidant and enzyme inhibitory activities of Parkia biglobosa (Jacq.) Benth., Tithonia diversifolia (Hemsl) A. Gray, and Crossopteryx febrifuga (Afzel.) Benth, Arabian J. Chem., 15 (4), 103675.

[8] Wahyuningsih, M.S., Wijayanti, M.A., Budiyanto, A., and Hanafi, M., 2015, Isolation and identification of potential cytotoxic compound from kembang bulan [Tithonia diversifolia (Hemsley) A Gray] leaves, Int. J. Pharm. Sci., 7 (6), 298–301.

[9] Mabou Tagne, A., Marino, F., and Cosentino, M., 2018, Tithonia diversifolia (Hemsl.) A. Gray as a medicinal plant: A comprehensive review of its ethnopharmacology, phytochemistry, pharmacotoxicology, and clinical relevance, J. Ethnopharmacol., 220, 94–116.

[10] Ojo, O.A., Ojo, A.B., Ajiboye, B.O., Olaiya, O., Okesola, M.A., Boligon, A.A., de Campos, M.M.A., Oyinloye, B.E., and Kappo, A.P., 2018, HPLC-DAD fingerprinting analysis, antioxidant activities of Tithonia diversifolia (Hemsl.) A. Gray leaves and its inhibition of key enzymes linked to Alzheimer’s disease, Toxicol. Rep., 5, 585–592.

[11] Omokhua, A.G., Abdalla, M.A., Van Staden, J., and McGaw, L.J., 2011, A comprehensive study of the potential phytomedicinal use and toxicity of invasive Tithonia species in South Africa, BMC Complementary Altern. Med., 18 (1), 272.

[12] Hiransai, P., Tangpong, J., Kumbuar, C., Hoonheang, N., Rodpech, O., Sangsuk, P., Kajklangdon, U., and Inkaow, W., 2016, Anti-nitric oxide production, anti-proliferation and antioxidant effects of the aqueous extract from Tithonia diversifolia, Asian Pac. J. Trop. Biomed., 6 (11), 950–956.

[13] Sijuade, A.O., Fadare, J.O., and Oseni, O.A., 2016, Evaluation of anti-inflammatory and analgesic activities of Tithonia diversifolia in experimental animal models, J. Adv. Med. Med. Res., 15 (3), 1–8.

[14] Afolayan, F.I.D., Adegbolagun, O.M., Irungu, B., Kangethe, L., Orwa, J., and Anumudu, C.I., 2016, Antimalarial actions of Lawsonia inermis, Tithonia diversifolia and Chromolaena odorata in combination, J. Ethnopharmacol., 191, 188–194.

[15] Yazid, F., Salim, S.O., Rahmadika, F.D., Rosmalena, R., Artanti, N., Sundowo, A., and Prasasty, V.D., 2021, Antidiabetic effects of Tithonia diversifolia and Malus domestica leaf extracts in alloxan-induced Sprague Dawley rats, Syst. Rev. Pharm., 12 (1), 1630–1638.

[16] Zhao, G., Li, X., Chen, W., Xi, Z., and Sun, L., 2012, Three new sesquiterpenes from Tithonia diversifolia and their anti-hyperglycemic activity, Fitoterapia, 83 (8), 1590–1597.

[17] Vasudevan, A., Kesavan, D.K., Wu, L., Su, Z., Wang, S., Ramasamy, M.K., Hopper, W., and Xu, H., 2022, In silico and in vitro screening of natural compounds as broad-spectrum β-lactamase inhibitors against Acinetobacter baumannii New Delhi Metallo-β-lactamase-1 (NDM-1), BioMed Res. Int., 2022 (1), 4230788.

[18] Anandika Lestari, O., Sri Palupi, N., Setiyono, A., Kusnandar, F., and Dewi Yuliana, N., 2024, LC-MS metabolomics and molecular docking approaches to identify antihyperglycemic and antioxidant compounds from Melastoma malabathricum L. leaf, Saudi J. Biol. Sci., 31 (8), 104047.

[19] Choudhary, M.I., Adhikari, A., Rasheed, S., Marasini, B.P., Hussain, N., Kaleem, W.A., Rahman, A., and ur-Rahman, A., 2011, Cyclopeptide alkaloids of Ziziphus oxyphylla as novel inhibitors of a-glucosidase enzyme and protein glycation, Phytochem. Lett., 4 (4), 404–406.

[20] Karomah, A.H., Imiawati, A., Syafitri, U.D., Septaningsih, D.A., Adfa, M., and Rafi, M., 2023, LC-HRMS-based metabolomics of Sida rhombifolia and evaluation of its biological activity using different extracting solvent concentrations, S. Afr. J. Bot., 161, 418–427.

[21] Mia, M.A., Ahmed, Q.U., Ferdosh, S., Helaluddin, A.B., Awal, M.S., Sarian, M.N., Sarker, M.Z., and Zakaria, Z.A., 2022, In vitro, in silico and network pharmacology mechanistic approach to investigate the α-glucosidase inhibitors identified by Q-ToF-LCMS from Phaleria macrocarpa fruit subcritical CO2 extract, Metabolites, 12 (12), 1267.

[22] Chunudom, L., Thongsom, M., Karim, N., Rahman, M.A., Rana, M.N., and Tangpong, J., 2020, Tithonia diversifolia aqueous fraction plays a protective role against alloxan-induced diabetic mice via modulating GLUT2 expression, S. Afr. J. Bot., 133, 118–123.

[23] Adefegha, S.A., Oboh, G., Ejakpovi, I.I., and Oyeleye, S.I., 2015, Antioxidant and antidiabetic effects of gallic and protocatechuic acids: a structure-function perspective, Comp. Clin. Pathol., 24 (6), 1579–1585.

[24] Alqahtani, A.S., Hidayathulla, S., Rehman, M.T., ElGamal, A.A., Al-Massarani, S., Razmovski-Naumovski, V., Alqahtani, M.S., El Dib, R.A., and Al-Ajmi, M.F, 2020, Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia, Biomolecules, 10 (1), 61.

[25] Ghani, U., Ashraf, S., Ul-Haq, Z., Kaplancikli, Z.A., Demirci, F., Özkay, Y., and Afzal, S., 2022, The 4-(dimethylaminoalkyl)piperazine inhibitors of α-glucosidase: Allosteric enzyme inhibition and identification of interacting chemical groups, Turk. J. Chem., 46 (5), 1484–1492.

[26] Chen, S., Xi, M., Gao, F., Li, M., Dong, T., Geng, Z., Liu, C., Huang, F., Wang, J., Li, X., Wei, P., and Miao, F., 2023, Evaluation of mulberry leaves' hypoglycemic properties and hypoglycemic mechanisms, Front Pharmacol., 14, 1045309.

[27] Ernawati, T., Radji, M., Hanafi, M., Mun’im, A., and Yanuar, A., 2017, Cinnamic acid derivatives as α-glucosidase inhibitor agents, Indones. J. Chem., 17 (1), 151–160.

[28] Yu, S.J., So, Y.S., Lim, C., Cho, C.H., Lee, S.G., Yoo, S.H., Park, C.S., Lee, B.H., Min, K.H., and Seo, D.H., 2024, Efficient biotransformation of naringenin to naringenin α-glucoside, a novel α-glucosidase inhibitor, by amylosucrase from Deinococcus wulumuquiensis, Food Chem., 448, 139182.

[29] Ha, B.G., Yonezawa, T., Son, M.J., Woo, J.T., Ohba, S., Chung, U.I., and Yagasaki, K., 2014, Antidiabetic effect of nepodin, a component of Rumex roots, and its modes of action in vitro and in vivo, BioFactors, 40 (4), 436–447.

[30] Filimonov, D.A., Lagunin, A.A., Gloriozova, T.A., Rudik, A.V., Druzhilovskii, D.S., Pogodin, P.V., and Poroikov, V.V., 2014, Prediction of biological activity spectra of organic compounds using web-resource pass online, Chem. Heterocycl. Compd., 50 (3), 483–499.

[31] Leeson, P.D., Bento, A.P., Gaulton, A., Hersey, A., Manners, E.J., Radoux, C.J., and Leach, A.R., 2021, Target-based evaluation of "drug-like" properties and ligand efficiencies, J. Med. Chem., 64 (11), 7210–7230.

[32] Karami, T.K., Hailu, S., Feng, S., Graham, R., and Gukasyan, H.J., 2022, Eyes on Lipinski's Rule of Five: A new "rule of thumb" for physicochemical design space of ophthalmic drugs, J. Ocul. Pharmacol. Ther., 38 (1), 43–55.

[33] Nhlapho, S., Nyathi, M.H.L, Ngwenya, B.L., Dube, T., Telukdarie, A., Munien, I., Vermeulen, A., and Chude-Okonkwo, U.A.K, 2024, Druggability of pharmaceutical compounds using Lipinski rules with machine learning, SciPhar, 3 (4), 177–192.

[34] Stielow, M., Witczyńska, A., Kubryń, N., Fijałkowski, Ł., Nowaczyk, J., and Nowaczyk, A., 2023, The bioavailability of drugs—The current state of knowledge, Molecules, 28 (24), 8038.

[35] Cornelissen, F.M.G., Markert, G., Deutsch, G., Antonara, M., Faaij, N., Bartelink, I., Noske, D., Vandertop, W.P., Bender, A., and Westerman, B.A., 2023, Explaining blood-brain barrier permeability of small molecules by integrated analysis of different transport mechanisms, J. Med. Chem., 66 (11), 7253–7267.

[36] Stock, V., Hofer, R., Lochmann, F., Spanke, V., Liedl, K.R., Troppmair, J., Langer, T., Gstach, H., Dank, C., Mayhew, C.A., Kammerer, S., and Ruzsanyi, V., 2025, Tolterodine is a novel candidate for assessing CYP3A4 activity through metabolic volatiles to predict drug responses, Sci. Rep., 15 (1), 2462.

[37] Rendic, S., and Guengerich, F.P., 2015, Survey of human oxidoreductases and cytochrome P450 Enzymes involved in the metabolism of xenobiotic and natural chemicals, Chem. Res. Toxicol., 28 (1), 38–42.

[38] Argikar, U.A., Potter, P.M., Hutzler, J.M., and Marathe, P.H., 2016, Challenges and opportunities with non-CYP enzymes aldehyde oxidase, carboxylesterase, and UDP-glucuronosyltransferase: Focus on reaction phenotyping and prediction of human clearance, AAPS J., 18 (6), 1391–1405.

[39] Bansal, N., Momin, S., Bansal, R., Gurram Venkata, S.K.R., Ruser, L., and Yusuf, K., 2024, Pharmacokinetics of drugs: Newborn perspective, Pediatr. Med., 7, 19.

[40] Hacker, K., Maas, R., Kornhuber, J., Fromm, M.F., and Zolk, O., 2015, Substrate-dependent inhibition of the human organic cation transporter OCT2: A comparison of metformin with experimental substrates, PLoS One, 10 (9), e0136451.

[41] Sandoval, P.J., Zorn, K.M., Clark, A.M., Ekins, S., and Wright, S.H., 2018, Assessment of substrate-dependent ligand interactions at the organic cation transporter OCT2 using six model substrates, Mol. Pharmacol., 94 (3), 1057–1068.

[42] David, S., and Hamilton, J.P., 2010, Drug-induced liver injury, US Gastroenterol Hepatol. Rev., 6, 73–80.

[43] Heim, H.K., and Mayer, P., 2014, “Dose-Response Analysis, Identification of Threshold Levels for Chemicals” in Regulatory Toxicology, Eds. Reichl. FX., and Schwenk, M., Springer, Berlin, Heidelberg.

[44] Arfan, A., Rayani, N., Ruslin, R., Kasmawati, H., Aman, L.O., and Asnawi, A., 2024, Rigid and flexible docking study with ADME evaluation of hesperetin analogs as LecB inhibitors in Pseudomonas aeruginosa, IJPST, 6 (2), 15–24.

[45] Alogheli, H., Olanders, G., Schaal, W., Brandt, P., and Karlén, A., 2017, Docking of macrocycles: Comparing rigid and flexible docking in glide, J. Chem. Inf. Model., 57 (2), 190–202.

[46] Lu, W., Zhang, J., Huang, W., Zhang, Z., Jia, X., Wang, Z., Shi, L., Li, C., Wolynes, P.G., and Zheng, S., 2024, DynamicBind: Predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model, Nat. Commun., 15 (1), 1071.



DOI: https://doi.org/10.22146/ijc.103111

Article Metrics

Abstract views : 279 | views : 151 | views : 116


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.