Tirucallane-Type Triterpenoids from the Dysoxylum gaudichaudianum Stem Bark: Phytochemical Study and Cytotoxicity Evaluation Against Human HeLa Cervical Cancer Cells
Faizah Maira(1), Al Arofatus Naini(2), Tri Mayanti(3), Sofa Fajriah(4), Kusumiyati Kusumiyati(5), Unang Supratman(6*)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(2) Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center Complex – BRIN, Cibinong 16911, Bogor, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(4) Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center Complex – BRIN, Cibinong 16911, Bogor, Indonesia
(5) Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km, 21, Jatinangor, 45363, Sumedang, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(*) Corresponding Author
Abstract
Keywords
References
[1] Atkinson, B.A., 2020, Fossil evidence for a Cretaceous rise of the mahogany family, Am. J. Bot., 107 (1), 139–147.
[2] Chuang, L., Liu, S., and Franke, J., 2023, Post-cyclization skeletal rearrangements in plant triterpenoid biosynthesis by a pair of branchpoint isomerases, J. Am. Chem. Soc., 145 (9), 5083–5091.
[3] Cui, G., Li, Y., Yi, X., Wang, J., Lin, P., Lu, C., Zhang, Q., Gao, L., and Zhong, G., 2023, Meliaceae genomes provide insights into wood development and limonoids biosynthesis, Plant Biotechnol. J., 21 (3), 574–590.
[4] Muellner-Riehl, A.N., and Rojas-Andrés, B.M., 2022, Biogeography of neotropical Meliaceae: Geological connections, fossil and molecular evidence revisited, Braz. J. Bot., 45 (1), 527–543.
[5] Lin, L.G., Ung, C.O.L., Feng, Z.L., Huang, L., and Hu, H., 2016, Naturally occurring diterpenoid dimers: Source, biosynthesis, chemistry and bioactivities, Planta Med., 82 (15), 1309–1328.
[6] Riyadi, S.A., Naini, A.A., and Supratman, U., 2023, Sesquiterpenoids from Meliaceae family and their biological activities, Molecules, 28 (12), 4874.
[7] Naini, A.A., Mayanti, T., Hilmayanti, E., Huang, X., Kabayama, K., Shimoyama, A., Manabe, Y., Fukase, K., and Supratman, U., 2024, Immunomodulatory of sesquiterpenoids and sesquiterpenoid dimers-based toll-like receptor 4 (TLR4) from Dysoxylum parasiticum stem bark, Sci. Rep., 14 (1), 15597.
[8] Naini, A.A., Mayanti, T., Maharani, R., Fajriah, S., Kabayama, K., Shimoyama, A., Manabe, Y., Fukase, K., Jungsuttiwong, S., and Supratman, U., 2023, Dysoticans F-H: Three unprecedented dimeric cadinanes from Dysoxylum parasiticum (Osbeck) Kosterm. stem bark, RSC Adv., 13 (14), 9370–9376.
[9] Lin, M., Liu, X., Chen, J., Huang, J., and Zhou, L., 2024, Insecticidal triterpenes in Meliaceae III: Plant species, molecules, and activities in Munronia–Xylocarpus, Int. J. Mol. Sci., 25 (14), 7818.
[10] Riyadi, S.A., Naini, A.A., Mayanti, T., Farabi, K., Lesmana, R., Azmi, M.N., Fajriah, S., and Supratman, U., 2024, Cytotoxic tirucallanes from Dysoxylum alliaceum stem barks in human cancer and normal cells lines, J. Biol. Act. Prod. Nat., 14 (2), 171–186.
[11] Liu, W., Gao, J., Li, M., Aisa, H.A., and Yuan, T., 2021, Tirucallane triterpenoids from the mastic (Pistacia lentiscus) and their anti-inflammatory and cytotoxic activities, Phytochemistry, 182, 112596.
[12] Naini, A.A., Mayanti, T., Maharani, R., Harneti, D., Nurlelasari, N., Farabi, K., Fajriah, S., Hilmayanti, E., Kabayama, K., Shimoyama, A., Manabe, Y., Fukase, K., Jungsuttiwong, S., Prescott, T.A.K., and Supratman, U., 2024, Paraxylines A-G: Highly oxygenated preurianin-type limonoids with immunomodulatory TLR4 and cytotoxic activities from the stem bark of Dysoxylum parasiticum, Phytochemistry, 220, 114009.
[13] Fan, W., Fan, L., Wang, Z., and Yang, L., 2022, Limonoids from the genus Melia (Meliaceae): Phytochemistry, synthesis, bioactivities, pharmacokinetics, and toxicology, Front. Pharmacol., 12, 795565.
[14] Nacoulma, A.P., Combia, Y.K., Meda, N.S.B.R., Palm, C.A.N., Bambara, A., Yaro, A., and Kabre, E., 2024, Pharmacognostical studies and phytochemical evaluation of four Meliaceae plants widely use in ethnomedicine across West Africa, J. Pharmacogn. Phytochem., 13 (2), 18–26.
[15] Yuliet, Y., Widodo, A., Khaerati, K., and Tandi, J., 2023, Phytochemical analysis and cytotoxic activities of hantap leaves (Sterculia coccinea Jack) extract, Indones. J. Chem., 23 (3), 671–680.
[16] Naini, A.A., Mayanti, T., and Supratman, U., 2022, Triterpenoids from Dysoxylum genus and their biological activities, Arch. Pharmacal Res., 45 (2), 63–89.
[17] Oyedeji Amusa, M.O., Stewart, R.D., van der Bank, M., and van Wyk, B.E., 2024, A taxonomic review of South African indigenous Meliaceae using molecular systematics and anatomical data, Diversity, 16 (2), 113.
[18] Ramírez, C., Cardozo, M., López Gastón, M., Galdeano, E., and Collavino, M.M., 2024, Plant growth promoting activities of endophytic bacteria from Melia azedarach (Meliaceae) and their influence on plant growth under gnotobiotic conditions, Heliyon, 10 (15), e35814.
[19] Wibawa, I.P.A.H., Hanafi, M., Butardo, V.M., and Mahon, P.J., 2024, The Leaf Extract of Dysoxylum parasiticum (Osbeck) Kosterm. contains antioxidant and α-glucosidase inhibitor activities, J. Trop. Life Sci., 14 (2), 397–404.
[20] Bhardwaj, N., Gupta, P., Tripathi, N., Chakrabarty, S., Verma, A., Kumari, S., Gautam, V., Ravikanth, G., and Jain, S.K., 2024, New ring-A modified cycloartane triterpenoids from Dysoxylum malabaricum bark: Isolation, structure elucidation and their cytotoxicity, Steroids, 205, 109390.
[21] Dharmayani, N.K.T., Yoshimura, T., Hermawati, E., Juliawaty, L.D., and Syah, Y.M., 2020, Antibacterial and antifungal two phenolic sesquiterpenes from Dysoxylum densiflorum, Z. Naturforsch., C: Biosci., 75 (1-2), 1–5.
[22] Durán-Peña, M.J., Botubol-Ares, J.M., Collado, I.G., and Hernandez-Galán, R., 2023, Degraded limonoids: Biologically active limonoid fragments re-enhancing interest in Meliaceae and Rutaceae sources, Phytochem. Rev., 22 (3), 695–741.
[23] Naini, A.A., Mayanti, T., Harneti, D., Darwati, D., Nurlelasari, N., Maharani, R., Farabi, K., Herlina, T., Supratman, U., Fajriah, S., Kuncoro, H., Azmi, M.N., Shiono, Y., Jungsuttiwong, S., and Chakthong, S., 2023, Sesquiterpenoids and sesquiterpenoid dimers from the stem bark of Dysoxylum parasiticum (Osbeck) Kosterm, Phytochemistry, 205, 113477.
[24] Kautsari, A., Naini, A.A., Mayanti, T., Nurlelasari, N., Harneti, D., Farabi, K., Maharani, R., Harizon, H., Azmi, M.N., and Supratman, U., 2024, Excelxylin A: a new seco A-ring tirucallane triterpenoid from the stem bark of Dysoxylum excelsum, J. Asian Nat. Prod. Res., 26 (7), 843–849.
[25] Riyadi, S.A., Naini, A.A., Mayanti, T., Lesmana, R., Azmi, M.N., Fajriah, S., Jungsuttiwong, S., and Supratman, U., 2024, Alliaxylines A–E: Five new mexicanolides from the stem barks of Dysoxylum alliaceum (Blume) Blume ex A.Juss, J. Nat. Med., 78 (3), 558–567.
[26] Pham, N.K., Bui, H.T., Tran, T.H., Hoang, T.N.A., Vu, T.H., Do, D.T., Kim, Y.H., Song, S.B., To, D.C., and Nguyen, M.C., 2021, Dammarane triterpenes and phytosterols from Dysoxylum tpongense Pierre and their anti-inflammatory activity against liver X receptors and NF-κB activation, Steroids, 175, 108902.
[27] Lin, M., Yang, S., Huang, J., and Zhou, L., 2021, Insecticidal triterpenes in Meliaceae: Plant species, molecules and activities: Part I (Aphanamixis-Chukrasia), Int. J. Mol. Sci., 22 (24), 13262.
[28] Kuck, K., Unterholzner, A., Lipowicz, B., Schwindl, S., Jürgenliemk, G., Schmidt, T.J., and Heilmann, J., 2023, Terpenoids from myrrh and their cytotoxic activity against HeLa cells, Molecules, 28 (4), 1637.
[29] Bachořík, J., and Urban, M., 2021, Biocatalysis in the chemistry of lupane triterpenoids, Molecules, 26 (8), 2271.
[30] Yan, H., Si, H., Zhao, H., Chen, L., Yu, J., Zhao, H., and Wang, X., 2021, Four new cycloartane triterpenoids from the leaves of Dysoxylum binectariferum, Phytochem. Lett., 41, 101–105.
[31] Almeida, A., Dong, L., Appendino, G., and Bak, S., 2020, Plant triterpenoids with bond-missing skeletons: Biogenesis, distribution and bioactivity, Nat. Prod. Rep., 37 (9), 1207–1228.
[32] Noushahi, H.A., Khan, A.H., Noushahi, U.F., Hussain, M., Javed, T., Zafar, M., Batool, M., Ahmed, U., Liu, K., Harrison, M.T., Saud, S., Fahad, S., and Shu, S., 2022, Biosynthetic pathways of triterpenoids and strategies to improve their biosynthetic efficiency, Plant Growth Regul., 97 (3), 439–454.
[33] Hussain, H., Xiao, J., Ali, A., Green, I.R., and Westermann, B., 2022, Unusually cyclized triterpenoids: occurrence, biosynthesis and chemical synthesis, Nat. Prod. Rep., 40 (2), 412–451.
[34] Tonga, J.L., Kamdem, M.H.K., Pagna, J.I.M., Fonkui, T.Y., Tata, C.M., Fotsing, M.C.D., Nkengfack, E.A., Mmutlane, E.M., and Ndinteh, D.T., 2022, Antibacterial activity of flavonoids and triterpenoids isolated from the stem bark and sap of Staudtia kamerunensis Warb. (Myristicaceae), Arabian J. Chem., 15 (10), 104150.
[35] Liu, C.Y., Zhang, L., Liu, S.X., Lu, Y.F., Li, C., and Pei, Y.H., 2024, A review of the fernane-type triterpenoids as anti-fungal drugs, Front. Pharmacol., 15, 1447450.
[36] Kong, B.L.H., Nong, W., Wong, K.H., Law, S.T.S., So, W.L., Chan, J.J.S., Zhang, J., Lau, T.W.D., Hui, J.H.L., and Shaw, P.C., 2022, Chromosomal level genome of Ilex asprella and insight into antiviral triterpenoid pathway, Genomics, 114 (3), 110366.
[37] Oluyemi, W.M., Samuel, B.B., Kaehlig, H., Zehl, M., Parapini, S., D’Alessandro, S., Taramelli, D., and Krenn, L., 2020, Antiplasmodial activity of triterpenes isolated from the methanolic leaf extract of Combretum racemosum P. Beauv, J. Ethnopharmacol., 247, 112203.
[38] Mongalo, N.I., McGaw, L.J., Finnie, J.F., and Van Staden, J., 2022, Isolation and characterization of antimicrobial and anti-inflammatory triterpenoids from the acetone extract of Grewia flava DC. (Malvaceae) roots, S. Afr. J. Bot., 149, 87–95.
[39] Kaps, A., Gwiazdoń, P., and Chodurek, E., 2021, Nanoformulations for delivery of pentacyclic triterpenoids in anticancer therapies, Molecules, 26 (6), 1764.
[40] Li, J.C., Li, S.Y., Tang, J.X., Liu, D., Feng, X.Y., Rao, K.R., Zhao, X.D., Li, H.M., and Li, R.T., 2022, Triterpenoids, steroids and other constituents from Euphorbia kansui and their anti-inflammatory and anti-tumor properties, Phytochemistry, 204, 113449.
[41] Cao, L., Jin, H., Liang, Q., Yang, H., Li, S., Liu, Z., and Yuan, Z., 2022, A new anti-tumor cytotoxic triterpene from Ganoderma lucidum, Nat. Prod. Res., 36 (16), 4125–4131.
[42] Liu, F.S., Zhang, T.T., Xu, J., Jing, Q.X., Gong, C., Dong, B.J., Li, D.H., Liu, X.Q., Li, Z.L., Yuan, Z., and Hua, H.M., 2021, New tirucallane-type triterpenoids from the resin of Boswellia carterii and their NO inhibitory activities, Chin. J. Nat. Med., 19 (9), 686–692.
[43] Zhou, X.J., Xu, M., Li, X.S., Wang, Y.H., Gao, Y., Cai, R., and Cheng, Y.X., 2011, Triterpenoids and sterones from the stem bark of Ailanthus altissima, Bull. Korean Chem. Soc., 32 (1), 127–130.
[44] Luo, X.D., Wu, S.H., Ma, Y.B., and Wu, D.G., 2000, Tirucallane triterpenoids from Dysoxylum hainanense, Phytochemistry, 54 (8), 801–805.
[45] Luzak, B., Siarkiewicz, P., and Boncler, M., 2022, An evaluation of a new high-sensitivity PrestoBlue assay for measuring cell viability and drug cytotoxicity using EA.hy926 endothelial cells, Toxicol. In Vitro, 83, 105407.
[46] Gavamukulya, Y., Maina, E.N., Meroka, A.M., El-Shemy, H.A., Magoma, G., and Wamunyokoli, F., 2019, In search of new anticancer drugs: Data for cytotoxic activities of green synthesized silver nanoparticles from ethanolic extracts of fruits and leaves of Annona muricata and 5-Fluorouracil against HeLa, PC3 and PNT1A cell lines, Data Brief, 26, 104442.
[47] Kumara, P.M., Varun, E., Sanjay, J.R., Madhushree, A.H., and Thimmappa, R., 2023, De novo transcriptome analysis of Dysoxylum binectariferum to unravel the biosynthesis of pharmaceutically relevant specialized metabolites, Front. Plant Sci., 14, 1098987.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.












