Green Synthesis of Selenium Nanoparticles from Okra (Abelmoschus esculentus) Extract with Characterization and Antioxidant Activity
Raden Joko Kuncoroningrat Susilo(1*), Retna Apsari(2), Suhailah Hayaza(3), Yeremia Budi Cristian(4), Vania Griselda Prasetyo(5), Imanda Widianti(6), Anastasia Alin Palmasih(7), Khairunadwa Jemon(8), Elma Sakinatus Sajidah(9)
(1) Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
(2) Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
(3) Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
(4) Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
(5) Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
(6) Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
(7) Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
(8) Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
(9) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Bharathala, S., and Sharma, P., 2019, “Biomedical Applications of Nanoparticles” in Nanotechnology in Modern Animal Biotechnology, Eds. Maurya, P.K., and Singh, S., Elsevier, St. Louis, Missouri, US, 113–132.
[2] Sajid, M., and Płotka-Wasylka, J., 2020, Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences, Microchem. J., 154, 104623.
[3] Sajid, M., 2022, Nanomaterials: Types, properties, recent advances, and toxicity concerns, Curr. Opin. Environ. Sci. Health, 25, 100319.
[4] Kokina, I., Plaksenkova, I., Jankovskis, L., Jermaļonoka, M., and Galek, R., 2024, New insights on biosynthesis of nanoparticles using plants emphasizing the use of alfalfa (Medicago sativa L.), J. Nanotechnol., 2024 (1), 9721166.
[5] Sahoo, B.M., and Banik, B.K., 2020, “Solvent-Less Reactions: Green and Sustainable Approaches in Medicinal Chemistry” in Green Approaches in Medicinal Chemistry for Sustainable Drug Design, Elsevier, Amsterdam, Netherlands, 523–548.
[6] Banu, K.S., and Chakraborty, P., 2024, An overview of bio-assisted nanoparticles: Synthesis, application and challenges in nature’s toolbox, Nano-Struct. Nano-Objects, 39, 101317.
[7] Qamar, S.U.R., and Ahmad, J.N., 2021, Nanoparticles: Mechanism of biosynthesis using plant extracts, bacteria, fungi, and their applications, J. Mol. Liq., 334, 116040.
[8] Khan, F., Shariq, M., Asif, M., Siddiqui, M.A., Malan, P., and Ahmad, F., 2022, Green nanotechnology: Plant-mediated nanoparticle synthesis and application, Nanomaterials, 12 (4), 673.
[9] Genchi, G., Lauria, G., Catalano, A., Sinicropi, M.S., and Carocci, A., 2023, Biological activity of selenium and its impact on human health, Int. J. Mol. Sci., 24 (3), 2633.
[10] Gui, J.Y., Rao, S., Huang, X., Liu, X., Cheng, S., and Xu, F., 2022, Interaction between selenium and essential micronutrient elements in plants: A systematic review, Sci. Total Environ., 853, 158673.
[11] Weaver, K., and Skouta, R., 2022, The selenoprotein glutathione peroxidase 4: From molecular mechanisms to novel therapeutic opportunities, Biomedicines, 10 (4), 891.
[12] Kang, D., Lee, J., Wu, C., Guo, X., Lee, B.J., Chun, J.S., and Kim, J.H., 2020, The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies, Exp. Mol. Med., 52 (8), 1198–1208.
[13] Mikhailova, E.O., 2023, Selenium nanoparticles: Green synthesis and biomedical application, Molecules, 28 (24), 8125.
[14] Salah, M., Elkabbany, N.A.S., and Partila, A.M., 2024, Evaluation of the cytotoxicity and antibacterial activity of nano-selenium prepared via gamma irradiation against cancer cell lines and bacterial species, Sci. Rep., 14 (1), 20523.
[15] Sentkowska, A., Konarska, J., Szmytke, J., and Grudniak, A., 2024, Herbal polyphenols as selenium reducers in the green synthesis of selenium nanoparticles: Antibacterial and antioxidant capabilities of the obtained SeNPs, Molecules, 29 (8), 1686.
[16] Ettadili, F.E., Aghris, S., Laghrib, F., Farahi, A., Saqrane, S., Bakasse, M., Lahrich, S., and El Mhammedi, M.A., 2022, Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations, J. Mol. Struct., 1248, 131538.
[17] Jamil, N., Saad Ali, H.M., Yasir, M., Hamza, M., Sagheer, M., Ahmed, T., Kanwal, Q., Bukhari, A., Al-Ahmary, K.M., and Ahmed, M., 2024, Biosynthesized metallic and bimetallic nanoparticles as effective biocides for plant protection: plausible mechanisms and challenges, J. Chem., 2024 (1), 3328223.
[18] Dantas, T.L., Alonso Buriti, F.C., and Florentino, E.R., 2021, Okra (Abelmoschus esculentus L.) as a potential functional food source of mucilage and bioactive compounds with technological applications and health benefits, Plants, 10 (8), 1683.
[19] Schafleitner, R., Lin, C.Y., Lin, Y.P., Wu, T.H., Hung, C.H., Phooi, C.L., Chu, S.H., Jhong, Y.C., and Hsiao, Y.Y., 2021, The world vegetable center okra (Abelmoschus esculentus) core collection as a source for flooding stress tolerance traits for breeding, Agriculture, 11 (2), 165.
[20] Guebebia, S., Espinosa-Ruiz, C., Zourgui, L., Cuesta, A., Romdhane, M., and Esteban, M.Á., 2023, Effects of okra (Abelmoschus esculentus L.) leaves, fruits and seeds extracts on European sea bass (Dicentrarchus labrax) leukocytes, and their cytotoxic, bactericidal and antioxidant properties, Fish Shellfish Immunol., 138, 108799.
[21] Elkhalifa, A.E.O., Alshammari, E., Adnan, M., Alcantara, J.C., Awadelkareem, A.M., Eltoum, N.E., Mehmood, K., Panda, B.P., and Ashraf, S.A., 2021, Okra (Abelmoschus esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications, Molecules, 26 (3), 696.
[22] Rahaman Mollick, M.M., Bhowmick, B., Mondal, D., Maity, D., Rana, D., Dash, S.K., Chattopadhyay, S., Roy, S., Sarkar, J., Acharya, K., Chakraborty, M., and Chattopadhyay, D., 2014, Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route, RSC Adv., 4 (71), 37838–37848.
[23] Kombaiah, K., Vijaya, J.J., Kennedy, L.J., Bououdina, M., Ramalingam, R.J., and Al-Lohedan, H.A., 2018, Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties, Mater. Chem. Phys., 204, 410–419.
[24] Deen, G.R., Hannan, F.A., Henari, F., and Akhtar, S., 2022, Effects of different parts of the okra plant (Abelmoschus esculentus) on the phytosynthesis of silver nanoparticles: Evaluation of synthesis conditions, nonlinear optical and antibacterial properties, Nanomaterials, 12 (23), 4174.
[25] Javid-Naderi, M.J., Sabouri, Z., Jalili, A., Zarrinfar, H., Samarghandian, S., and Darroudi, M., 2023, Green synthesis of copper oxide nanoparticles using okra (Abelmoschus esculentus) fruit extract and assessment of their cytotoxicity and photocatalytic applications, Environ. Technol. Innovation, 32, 103300.
[26] Allameh, A., Niayesh-Mehr, R., Aliarab, A., Sebastiani, G., and Pantopoulos, K., 2023, Oxidative stress in liver pathophysiology and disease, Antioxidants, 12 (9), 1653.
[27] Farag, M.R., Moselhy, A.A.A., El-Mleeh, A., Aljuaydi, S.H., Ismail, T.A., Di Cerbo, A., Crescenzo, G., and Abou-Zeid, S.M., 2021, Quercetin alleviates the immunotoxic impact mediated by oxidative stress and inflammation induced by doxorubicin exposure in rats, Antioxidants, 10 (12), 1906.
[28] Yu, M., Gouvinhas, I., Rocha, J., and Barros, A.I.R.N.A., 2021, Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources, Sci. Rep., 11 (1), 10041.
[29] Hamed, M., Soliman, H.A.M., Osman, A.G.M., and Sayed, A.E.D.H., 2020, Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics, Environ. Sci. Pollut. Res., 27 (13), 14581–14588.
[30] Alagesan, V., and Venugopal, S., 2019, Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities, Bionanosci., 9 (1), 105–116.
[31] Vasanthakumar, S., Manikandan, M., and Arumugam, M., 2024, Green synthesis, characterization and functional validation of bio-transformed selenium nanoparticles, Biochem. Biophys. Rep., 39, 101760.
[32] Sui, M., Kunwar, S., Pandey, P., and Lee, J., 2019, Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles, Sci. Rep., 9 (1), 16582.
[33] Deepa, T., Mohan, S., and Manimaran, P., 2022, A crucial role of selenium nanoparticles for future perspectives, Results Chem., 4, 100367.
[34] Saravanakumar, K., Sathiyaseelan, A., Zhang, X., Park, S., and Wang, M.H., 2022, Purinoceptor targeted cytotoxicity of adenosine triphosphate-conjugated biogenic selenium nanoparticles in human colon cancer cells, Pharmaceuticals, 15 (5), 582.
[35] Alvi, G.B., Iqbal, M.S., Ghaith, M.M.S., Haseeb, A., Ahmed, B., and Qadir, M.I., 2021, Biogenic selenium nanoparticles (SeNPs) from citrus fruit have anti-bacterial activities, Sci. Rep., 11 (1), 4811.
[36] Annamalai, K.K., Selvaraj, B., Subramanian, K., Binsuwaidan, R., and Saeed, M., 2024, Antibiofilm and antivirulence activity of selenium nanoparticles synthesized from cell-free extract of moderately halophilic bacteria, Microb. Pathog., 193, 106740.
[37] Suvarna, S., Das, U., Sunil, K.C., Mishra, S., Sudarshan, M., Saha, K.D., Dey, S., Chakraborty, A., and Narayana, Y., 2017, Synthesis of a novel glucose capped gold nanoparticle as a better theranostic candidate, PLoS One, 12 (6), e0178202.
[38] Tendenedzai, J.T., Chirwa, E.M.N., and Brink, H.G., 2023, Harnessing selenium nanoparticles (SeNPs) for enhancing growth and germination, and mitigating oxidative stress in Pisum sativum L., Sci. Rep., 13 (1), 20379.
[39] Wang, Z., Li, N., Zhou, X., Wei, S., Zhu, Y., Li, M., Gong, J., He, Y., Dong, X., Gao, C., and Cheng, S., 2024, Optimization of fermentation parameters to improve the biosynthesis of selenium nanoparticles by Bacillus licheniformis F1 and its comprehensive application, BMC Microbiol., 24 (1), 271.
[40] Dutta, A., Paul, A., and Chattopadhyay, A., 2016, The effect of temperature on the aggregation kinetics of partially bare gold nanoparticles, RSC Adv., 6 (85), 82138–82149.
[41] Babakhani, P., 2019, The impact of nanoparticle aggregation on their size exclusion during transport in porous media: One- and three-dimensional modelling investigations, Sci. Rep., 9 (1), 14071.
[42] Nasruddin, N.A., Ithnin, N.R., Othman, H., Abu Hasan, Z.I., and Misni, N., 2024, Green synthesis of silver nanoparticles using aqueous fruit peel extract of Citrus aurantifolia: Optimization, its characterization and stability test, Sains Malays., 53 (5), 1119–1131
[43] Al-Zou’by, J.Y., Alsamarraie, L.A., and Al-Zboon, K.K., 2023, A study of the physicochemical properties of silver nanoparticles dispersed in various water chemistry settings, J. Nanopart. Res., 25 (12), 239.
[44] Athaydes Seabra Ferreira, H., Ricardo Aluotto Scalzo Júnior, S., Kelton Santos De Faria, K., Henrique Costa Silva, G., Túllio Rodrigues Alves, M., Oliveira Lobo, A., and Pires Goulart Guimarães, P., 2024, Cryoprotectant optimization for enhanced stability and transfection efficiency of pDNA-loaded ionizable lipid nanoparticles, Int. J. Pharm., 665, 124696.
[45] Li, D., Hua, X., Luo, J., and Xu, Y., 2023, Quantitative determination of galacturonic acid in pectin and pectin products by combined pectinase hydrolysis and HPLC determination, Food Addit. Contam.: Part A, 40 (3), 319–327.
[46] Ellerbrock, R.H., and Gerke, H.H., 2021, FTIR spectral band shifts explained by OM–cation interactions, J. Plant Nutr. Soil Sci., 184 (3), 388–397.
[47] Olawuyi, I.F., Park, J.J., Hahn, D., and Lee, W.Y., 2022, Physicochemical and functional properties of okra leaf polysaccharides extracted at different pHs, Chemistry, 4 (2), 405–418.
[48] García-Barradas, O., Esteban-Cortina, A., Mendoza-Lopez, M.R., Ortiz-Basurto, R.I., Díaz-Ramos, D.I., and Jiménez-Fernández, M., 2023, Chemical modification of Opuntia ficus-indica mucilage: Characterization, physicochemical, and functional properties, Polym. Bull., 80 (8), 8783–8798.
[49] Salem, S.S., 2022, Bio-fabrication of selenium nanoparticles using baker’s yeast extract and its antimicrobial efficacy on food borne pathogens, Appl. Biochem. Biotechnol., 194 (5), 1898–1910.
[50] Li, G., Wang, F., Wang, M.M., Tang, M.T., Zhou, T., and Gu, Q., 2022, Physicochemical, structural and rheological properties of pectin isolated from citrus canning processing water, Int. J. Biol. Macromol., 195, 12–21.
[51] Garza-García, J.J.O., Hernández-Díaz, J.A., León-Morales, J.M., Velázquez-Juárez, G., Zamudio-Ojeda, A., Arratia-Quijada, J., Reyes-Maldonado, O.K., López-Velázquez, J.C., and García-Morales, S., 2023, Selenium nanoparticles based on Amphipterygium glaucum extract with antibacterial, antioxidant, and plant biostimulant properties, J. Nanobiotechnol., 21 (1), 252.
[52] Dai, F., Zhuang, Q., Huang, G., Deng, H., and Zhang, X., 2023, Infrared spectrum characteristics and quantification of OH groups in coal, ACS Omega, 8 (19), 17064–17076.
[53] Zhao, D., Yu, S., Zang, W., Ge, J., and Du, R., 2025, Exopolysaccharide-selenium composite nanoparticle: Characterization, antioxidant properties and selenium release kinetics in simulated gastrointestinal conditions, Int. J. Biol. Macromol., 304, 140809.
[54] Satpathy, S., Panigrahi, L.L., Samal, P., Sahoo, K.K., and Arakha, M., 2024, Biogenic synthesis of selenium nanoparticles from Nyctanthes arbor-tristis L. and evaluation of their antimicrobial, antioxidant and photocatalytic efficacy, Heliyon, 10 (12), e32499.
[55] İpek, P., Baran, A., Hatipoğlu, A., and Baran, M.F., 2024, Cytotoxic potential of selenium nanoparticles (SeNPs) derived from leaf extract of Mentha longifolia L., Int. J. Agric. Environ. Food Sci., 8 (1), 169–175.
[56] Lesnichaya, M., Karpova, E., and Sukhov, B., 2021, Effect of high dose of selenium nanoparticles on antioxidant system and biochemical profile of rats in correction of carbon tetrachloride-induced toxic damage of liver, Colloids Surf., B, 197, 111381.
[57] Xiong, B., Zhang, W., Wu, Z., Liu, R., Yang, C., Hui, A., Huang, X., and Xian, Z., 2021, Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.), Int. J. Biol. Macromol., 181, 824–834.
[58] Chen, T.T., Zhang, Z.H., Wang, Z.W., Chen, Z.L., Ma, H., and Yan, J.K., 2021, Effects of ultrasound modification at different frequency modes on physicochemical, structural, functional, and biological properties of citrus pectin, Food Hydrocolloids, 113, 106484.
[59] Nesic, A., Meseldzija, S., Onjia, A., and Cabrera-Barjas, G., 2022, Impact of crosslinking on the characteristics of pectin monolith cryogels, Polymers, 14 (23), 5252.
[60] Korotkevich, A.A., Moll, C.J., Versluis, J., and Bakker, H.J., 2023, Molecular orientation of carboxylate anions at the water–air interface studied with heterodyne-detected vibrational sum-frequency generation, J. Phys. Chem. B, 127 (20), 4544–4553.
[61] Indhira, D., Aruna, A., Manikandan, K., Albeshr, M.F., Alrefaei, A.F., Vinayagam, R., Kathirvel, A., Priyan, S.R., Kumar, G.S., and Srinivasan, R., 2023, Antimicrobial and photocatalytic activities of selenium nanoparticles synthesized from Elaeagnus indica leaf extract, Processes, 11 (4), 1107.
[62] Wu, K.J., Tse, E.C.M., Shang, C., and Guo, Z., 2022, Nucleation and growth in solution synthesis of nanostructures – From fundamentals to advanced applications, Prog. Mater. Sci., 123, 100821.
[63] Biela, M., Rimarčík, J., Senajová, E., Kleinová, A., and Klein, E., 2020, Antioxidant action of deprotonated flavonoids: Thermodynamics of sequential proton-loss electron-transfer, Phytochemistry, 180, 112528.
[64] Sirivibulkovit, K., Nouanthavong, S., and Sameenoi, Y., 2018, Paper-based DPPH assay for antioxidant activity analysis, Anal. Sci., 34 (7), 795–800.
[65] Rumpf, J., Burger, R., and Schulze, M., 2023, Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins, Int. J. Biol. Macromol., 233, 123470.
[66] Wang, L., Li, C., Huang, Q., and Fu, X., 2019, Biofunctionalization of selenium nanoparticles with a polysaccharide from Rosa roxburghii fruit and their protective effect against H2O2-induced apoptosis in INS-1 cells, Food Funct., 10 (2), 539–553.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.










