Design, Synthesis, and Antifungal Analysis of Pyrazoline Derivatives Against Candida Species: A Comprehensive In Vitro and In Silico Approach

https://doi.org/10.22146/ijc.105255

Muhammad Rohim(1), Yuli Haryani(2), Neni Frimayanti(3), Fauzan Zein Muttaqin(4), Hilwan Yuda Teruna(5), Rudi Hendra(6*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Kampus Binawidya, Jl. HR. Soebrantas Km. 12.5, Simpang Baru, Tampan, Pekanbaru, Riau 28293, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Kampus Binawidya, Jl. HR. Soebrantas Km. 12.5, Simpang Baru, Tampan, Pekanbaru, Riau 28293, Indonesia
(3) Department of Pharmacy, Sekolah Tinggi Ilmu Farmasi Riau, Jl. Kamboja, Simpang Baru, Tampan, Pekanbaru, Riau 28293, Indonesia
(4) Faculty of Pharmacy, Bhakti Kencana University, Jl. Soekarno Hatta No. 754, Bandung 40614, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Kampus Binawidya, Jl. HR. Soebrantas Km. 12.5, Simpang Baru, Tampan, Pekanbaru, Riau 28293, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Kampus Binawidya, Jl. HR. Soebrantas Km. 12.5, Simpang Baru, Tampan, Pekanbaru, Riau 28293, Indonesia
(*) Corresponding Author

Abstract


This study utilized in vitro and in silico methods to assess the antifungal efficacy of synthesized pyrazoline derivatives (4ae) against Candida species. The compounds were produced by a one-pot process and structurally analyzed using spectroscopic methods. The antifungal efficacy was evaluated against C. albicans, C. glabrata, and C. krusei using minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) assays. Among the derivatives, compound 4e exhibited potent antifungal action, displaying MIC values similar to ketoconazole. Molecular docking and pharmacophore modeling have shown that 4e interacts efficiently with critical residues of lanosterol 14α-demethylase (CYP51). The density functional theory (DFT) study indicated advantageous electrical characteristics, while molecular dynamics simulations validated the structural stability of the 4e–CYP51 complex, evidenced by low RMSD and RMSF values, along with an MM/GBSA binding energy comparable to that of ketoconazole. A robust association between binding energy and MIC substantiates the predictive use of computational data. The results suggest that compound 4e replicates the binding characteristics of ketoconazole and may be a viable candidate for antifungal medication development. This integrative strategy reinforces the justification for additional optimization and preclinical assessment of pyrazoline-based antifungal drugs aimed at CYP51.

Keywords


antifungal activity; Candida species; molecular docking; pyrazoline derivatives; structure-activity relationship (SAR)



References

[1] Gow, N.A.R., and Netea, M.G., 2016, Medical mycology and fungal immunology: New research perspectives addressing a major world health challenge, Philos. Trans. R. Soc., B, 371 (1709), 20150462.

[2] Abdel-Hamid, R.M., El-Mahallawy, H.A., Abdelfattah, N.E., and Wassef, M.A., 2023, The impact of increasing non-albicans Candida trends on diagnostics in immunocompromised patients, Braz. J. Microbiol., 54 (4), 2879–2892.

[3] Gómez-Gaviria, M., Ramírez-Sotelo, U., and Mora-Montes, H.M., 2022, Non-albicans Candida species: Immune response, evasion mechanisms, and new plant-derived alternative therapies, J. Fungi, 9 (1), 11.

[4] Whaley, S.G., Berkow, E.L., Rybak, J.M., Nishimoto, A.T., Barker, K.S., and Rogers, P.D., 2017, Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species, Front. Microbiol., 7, 2173.

[5] Fuentefria, A.M., Pippi, B., Dalla Lana, D.F., Donato, K.K., and de Andrade, S.F., 2018, Antifungals discovery: An insight into new strategies to combat antifungal resistance, Lett. Appl. Microbiol., 66 (1), 2–13.

[6] Vanreppelen, G., Wuyts, J., Van Dijck, P., and Vandecruys, P., 2023, Sources of antifungal drugs, J. Fungi, 9 (2), 171.

[7] Asif, M., Almehmadi, M., Alsaiari, A.A., and Allahyani, M., 2024, Diverse pharmacological potential of different substituted pyrazole derivatives, Curr. Org. Synth., 21 (7), 858–888.

[8] Praveen Kumar, C.H., Katagi, M.S., Samuel, J., and Nandeshwarappa, B.P., 2023, Synthesis, characterization and structural studies of novel pyrazoline derivatives as potential inhibitors of NAD+ synthetase in bacteria and cytochrome P450 51 in fungi, ChemistrySelect, 8 (12), e202300427.

[9] Kataria, A., Srivastava, A., Singh, D.D., Haque, S., Han, I., and Yadav, D.K., 2024, Systematic computational strategies for identifying protein targets and lead discovery, RSC Med. Chem., 15 (7), 2254–2269.

[10] Mishra, R., Mishra, P.S., Mazumder, R., Mazumder, A., and Chaudhary, A., 2021, Computational docking technique for drug discovery: A review, Res. J. Pharm. Technol., 14 (10), 5558–5562.

[11] Giordano, D., Biancaniello, C., Argenio, M.A., and Facchiano, A., 2022, Drug design by pharmacophore and virtual screening approach, Pharmaceuticals, 15 (5), 646.

[12] Mazurek, A.H., Szeleszczuk, Ł., and Pisklak, D.M., 2020, Periodic DFT calculations—Review of applications in the pharmaceutical sciences, Pharmaceutics, 12 (5), 415.

[13] Ebenezer, O., Shapi, M., and Tuszynski, J.A., 2022, A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives, Biomedicines, 10 (5), 1124.

[14] Army, M.K., Khodijah, R., Haryani, Y., Teruna, H.Y., and Hendra, R., 2023, Antibacterial in vitro screening of Helminthostachys zeylanica (L.) Hook. root extracts, J. Pharm. Pharmacogn. Res., 11 (2), 291–296.

[15] Hendra, R., Agustha, A., Frimayanti, N., Abdulah, R., and Teruna, H.Y., 2024, Antifungal potential of secondary metabolites derived from Arcangelisia flava (L.) Merr.: An analysis of in silico enzymatic inhibition and in vitro efficacy against Candida species, Molecules, 29 (10), 2373.

[16] Case, D.A., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Cheatham, III, T.E., Cruzeiro, V.W.D., Darden, T.A., Duke, R.E., Ghoreishi, D., Gilson, M.K., Gohlke, H., Goetz, A.W., Greene, D., Harris, R., Homeyer, N., Huang, Y., Izadi, S., Kovalenko, A., Kurtzman, T., Lee, T.S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Mermelstein, D.J., Merz, K.M., Miao, Y., Monard, G., Nguyen, C., Nguyen, H., Omelyan, I., Onufriev, A., Pan, F., Qi, R., Roe, D.R., Roitberg, A., Sagui, C., Schott-Verdugo, S., Shen, J., Simmerling, C.L., Smith, J., Salomon-Ferrer, R., Swails, J., Walker, R.C., Wang, J., Wei, H., Wolf, R.M., Wu, X., Xiao, L., York, D.M., and Kollman, P.A., 2018, AMBER 2018, University of California, San Francisco, US.

[17] Hussein, A.J., 2024, Synthesis, antimicrobial and antioxidant activity of some new pyrazolines containing azo linkages, Curr. Org. Synth., 21 (7), 903–916.

[18] Fitri, T.A., Hendra, R., and Zamri, A., 2023, One-pot synthesis and molecular docking study of pyrazoline derivatives as an anticancer agent: Pyrazoline derivatives as an anticancer agent, Pharm. Educ., 23 (2), 260–265.

[19] Farooq, S., and Ngaini, Z., 2020, One-pot and two-pot synthesis of chalcone based mono and bis-pyrazolines, Tetrahedron Lett., 61 (4), 151416.

[20] Horikoshi, S., Kamata, M., Mitani, T., and Serpone, N., 2014, Control of microwave-generated hot spots. 6. Generation of hot spots in dispersed catalyst particulates and factors that affect catalyzed organic syntheses in heterogeneous media, Ind. Eng. Chem. Res., 53 (39), 14941–14947.

[21] Pan, D., Mou, C., Zan, N., Lv, Y., Song, B.A., Chi, Y.R., and Jin, Z., 2019, NaOH-promoted chemoselective cascade cyclization of cyclopropyl esters with unsaturated imines: Access to bioactive cyclopenta[c]pyridine derivatives, Org. Lett., 21 (17), 6624–6627.

[22] Jash, M., Das, B., Sen, S., and Chowdhury, C., 2018, Intramolecular cycloaddition approach to fused pyrazoles: Access to 4,5-dihydro-2H-pyrazolo[4,3-c]quinolines, 2,8-dihydroindeno[2,1-c]pyrazoles, and 4,5-dihydro-2H-benzo[e]indazoles, Synthesis, 50 (7), 1511–1520.

[23] Divya, K.V.L., Meena, A., and Suja, T.D., 2016, Unified approach to pyrazole-fused heterocyclic and carbocyclic motifs through one-pot condensation and intramolecular dipolar cycloaddition reaction, Synthesis, 48 (23), 4207–4212.

[24] Patel, R.C., Rajani, D.P., Kunjadiya, A., and Patel, M.P., 2024, Microwave accelerated green access to functionalized pyrazolo[5,1-b]quinazoline-3-carboxylate scaffold and their pharmacological screening, J. Mol. Struct., 1310, 138295.

[25] Akhtar, W., Marella, A., Alam, M.M., Khan, M.F., Akhtar, M., Anwer, T., Khan, F., Naematullah, M., Azam, F., Rizvi, M.A., and Shaquiquzzaman, M., 2021, Design and synthesis of pyrazole–pyrazoline hybrids as cancer‐associated selective COX‐2 inhibitors, Arch. Pharm., 354 (1), 2000116.

[26] Praveen Kumar, C.H., Katagi Manjunatha, S., and Nandeshwarappa, B.P., 2023, Synthesis of novel pyrazolic analogues of chalcones as potential antibacterial and antifungal agents, Curr. Chem. Lett., 12 (3), 613–622.

[27] Vieira Melo, A.K., da Nóbrega Alves, D., Queiroga Gomes da Costa, P.C., Pereira Lopes, S., Pergentino de Sousa, D., Queiroga Sarmento Guerra, F., Vieira Sobral, M., Gomes Moura, A.P., Scotti, L., and Dias de Castro, R., 2024, Antifungal activity, mode of action, and cytotoxicity of 4‐chlorobenzyl p‐coumarate: A promising new molecule, Chem. Biodiversity, 21 (7), e202400330.

[28] Mishra, S., Kaur, M., Chander, S., Murugesan, S., Nim, L., Arora, D., and Singh, P., 2018, Rational modification of a lead molecule: Improving the antifungal activity of indole – triazole – amino acid conjugates, Eur. J. Med. Chem., 155, 658–669.

[29] Sharma, A., Jain, A.P., and Gangwar, M., 2021, Synthesis, characterization of some new 1,3,5-trisubstituted pyrazole derivatives for their antifungal potential, J. Pharm. Res. Int., 33 (57B), 211–223.

[30] Zarei, A., Ahmadi, Y., and Ramazani, A., 2025, In silico investigation on the inhibitory potential of natural polyphenolics against lanosterol 14α-demethylase to discover novel antifungal lead compounds, J. Mol. Struct., 1319, 139499.

[31] Hargrove, T.Y., Friggeri, L., Wawrzak, Z., Qi, A., Hoekstra, W.J., Schotzinger, R.J., York, J.D., Guengerich, F.P., and Lepesheva, G.I., 2017, Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis, J. Biol. Chem., 292 (16), 6728–6743.

[32] Yang, Y.D., He, Y.H., Ma, K.Y., Li, H., Zhang, Z.J., Sun, Y., Wang, Y.L., Hu, G.F., Wang, R.X., and Liu, Y.Q., 2021, Design and discovery of novel antifungal quinoline derivatives with acylhydrazide as a promising pharmacophore, J. Agric. Food Chem., 69 (30), 8347–8357.

[33] Kalinin, S., Kopylov, S., Tuccinardi, T., Sapegin, A., Dar’in, D., Angeli, A., Supuran, C.T., and Krasavin, M., 2017, Lucky switcheroo: Dramatic potency and selectivity improvement of imidazoline inhibitors of human carbonic anhydrase VII, ACS Med. Chem. Lett., 8 (10), 1105–1109.

[34] Yamari, I., Abchir, O., Nour, H., Khedraoui, M., Rossafi, B., Errougui, A., Talbi, M., Samadi, A., Kouali, M.E., and Chtita, S., 2024, Unveiling Moroccan nature’s arsenal: A computational molecular docking, density functional theory, and molecular dynamics study of natural compounds against drug-resistant fungal infections, Pharmaceuticals, 17 (7), 886.

[35] Alghamdi, S., Abbas, F., Hussein, R., Alhamzani, A., and El‐Shamy, N., 2023, Spectroscopic characterization (IR, UV-vis), and HOMO-LUMO, MEP, NLO, NBO analysis and the antifungal activity for 4-bromo-N-(2-nitrophenyl) benzamide; Using DFT modeling and in silico molecular docking, J. Mol. Struct., 1271, 134001.

[36] Mumit, M.A., Pal, T.K., Alam, M.A., Islam, M.A.A.A.A., Paul, S., and Sheikh, M.C., 2020, DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate, J. Mol. Struct., 1220, 128715.

[37] Srivastava, R., 2021, Chemical reactivity theory (CRT) study of small drug-like biologically active molecules, J. Biomol. Struct. Dyn., 39 (3), 943–952.

[38] Suresh, C.H., Remya, G.S., and Anjalikrishna, P.K., 2022, Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity, WIREs Comput. Mol. Sci., 12 (5), e1601.

[39] Strushkevich, N., Usanov, S.A., and Park, H.W., 2010, Structural basis of human CYP51 inhibition by antifungal azoles, J. Mol. Biol., 397 (4), 1067–1078.

[40] Thach, T.D., Le, T.T.V., Nguyen, H.T.A., Dang, C.H., Dang, V.S., and Nguyen, T.D., 2020, Synthesis of sulfonamides bearing 1,3,5-triarylpyrazoline and 4-thiazolidinone moieties as novel antimicrobial agents, J. Serb. Chem. Soc., 85 (2), 155–162.

[41] Liang, Z., Rong, Z., Cong, H., Qing-Ying, D., Ming-Zhu, S., Jie, W., Xu-Liang, N., Jin-Zhu, C., Shang-Xing, C., and Da-Yong, P., 2023, Design, synthesis and antifungal activity of novel pyrazole amides derivates, J. Mol. Struct., 1277, 134881.

[42] Desai, N.C., Vaja, D.V., Monapara, J.D., Manga, V., and Vani, T., 2021, Synthesis, biological evaluation, and molecular docking studies of novel pyrazole, pyrazoline‐clubbed pyridine as potential antimicrobial agents, J. Heterocycl. Chem., 58 (3), 737–750.

[43] Pathade, S.S., Adole, V.A., and Jagdale, B.S., 2021, PEG-400 mediated synthesis, computational, antibacterial and antifungal studies of fluorinated pyrazolines, Curr. Res. Green Sustainable Chem., 4, 100172.



DOI: https://doi.org/10.22146/ijc.105255

Article Metrics

Abstract views : 4595 | views : 2059 | views : 889


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.