A Computational Method of Investigating Natural Substances from Cyperus rotundus L. as Potential Brown Planthopper Nilaparvata lugens (Stål) Acetylcholinesterase Inhibitors
Saqib Hussain Bangash(1), Chen-Yang Wei(2), Akbar Ali(3), Muhammad Ibrahim(4), Fan-Dan Li(5), Amjad Hussain(6), Wen-Wei Tang(7*)
(1) Guangxi Key Laboratory of Agri-Environment and Agric-Product Safety, College of Agriculture, Department of Crop Environment and Ecology, Guangxi University, Nanning 530004, China; Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
(2) Guangxi Key Laboratory of Agri-Environment and Agric-Product Safety, College of Agriculture, Department of Crop Environment and Ecology, Guangxi University, Nanning 530004, China
(3) Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
(4) Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
(5) Guangxi Key Laboratory of Agri-Environment and Agric-Product Safety, College of Agriculture, Department of Crop Environment and Ecology, Guangxi University, Nanning 530004, China
(6) Institute of Chemistry, University of Okara, Okara-56300, Punjab, Pakistan
(7) Guangxi Key Laboratory of Agri-Environment and Agric-Product Safety, College of Agriculture, Department of Crop Environment and Ecology, Guangxi University, Nanning 530004, China
(*) Corresponding Author
Abstract
Keywords
References
[1] Alam, M., Lou, G., Abbas, W., Osti, R., Ahmad, A., Bista, S., Ahiakpa, J.K., and He, Y., 2024, Improving rice grain quality through ecotype breeding for enhancing food and nutritional security in Asia–Pacific region, Rice, 17 (1), 47.
[2] Conde, S., Catarino, S., Ferreira, S., Temudo, M.P., and Monteiro, F., 2025, Rice pests and diseases around the world: Literature-based assessment with emphasis on Africa and Asia, Agriculture, 15 (7), 667.
[3] Horgan, F.G., Peñalver Cruz, A., Bernal, C.C., Ramal, A.F., Almazan, M.L.P., and Wilby, A., 2018, Resistance and tolerance to the brown planthopper, Nilaparvata lugens (Stål), in rice infested at different growth stages across a gradient of nitrogen applications, Field Crops Res., 217, 53–65.
[4] Gong, J.T., Li, Y., Li, T.P., Liang, Y., Hu, L., Zhang, D., Zhou, C.Y., Yang, C., Zhang, X., Zha, S.S., Duan, X.Z., Baton, L.A., Hong, X.Y., Hoffmann, A.A., and Xi, Z., 2020, Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection, Curr. Biol., 30 (24), 4837–4845.e5.
[5] Liu, Z., Wu, J., Zhang, Y., Liu, F., Xu, J., and Bao, H., 2015, “Mechanisms of Rice Planthopper Resistance to Insecticides” in Rice Planthoppers: Ecology, Management, Socioeconomics and Policy, Eds. Heong, K.L., Cheng, J., and Escalada, M.M., Springer, Dordrecht, Netherlands 117–141.
[6] Garrood, W.T., Zimmer, C.T., Gorman, K.J., Nauen, R., Bass, C., and Davies, T.G.E., 2016, Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper Nilaparvata lugens collected from across South and East Asia, Pest. Manage. Sci., 72 (1), 140–149.
[7] Mota-Sanchez, D., and Wise, J., 2020, The Arthropod Pesticide Resistance Database, Michigan State University, http://www.pesticideresistance.org, accessed on 23 November 2023.
[8] Matsuda, K., Ihara, M., and Sattelle, D.B., 2020, Neonicotinoid insecticides: Molecular targets, resistance, and toxicity, Annu. Rev. Pharmacol. Toxicol., 60, 241–255.
[9] Liao, X., Xu, P.F., Gong, P.P., Wan, H., and Li, J.H., 2021, Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China, Insect Sci., 28 (1), 115–126.
[10] Ye, W.N., Li, Y., Zhang, Y.C., Liu, Z.Y., Song, X.Y., Pei, X.G., Wu, S.F., and Gao, C.F., 2024, Area-wide survey and monitoring of insecticide resistance in the brown planthopper, Nilaparvata lugens (Stål), from 2020 to 2023 in China, Pestic. Biochem. Physiol., 205, 106173.
[11] Khoa, D.B., Thang, B.X., Liem, N.V., Holst, N., and Kristensen, M., 2018, Variation in susceptibility of eight insecticides in the brown planthopper Nilaparvata lugens in three regions of Vietnam 2015–2017, PLoS One, 13 (10), e0204962.
[12] Datta, J., Wei, Q., Yang, Q., Wan, P.J., He, J.C., Wang, W.X., Lai, F.X., Ali, M.P., and Fu, Q., 2021, Current resistance status of the brown planthopper Nilaparvata lugens (Stål) to commonly used insecticides in China and Bangladesh, Crop Prot., 150, 105789.
[13] He, J., Li, B., Xie, M., Lai, F., Hu, G., and Fu, Q., 2019, Laboratory bioactivity study on neonicotinoid and other rice paddy used insecticides against the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), Chin. J. Rice Sci., 33 (5), 467–478.
[14] Cruse, C., Moural, T.W., and Zhu, F., 2023, Dynamic roles of insect carboxyl/cholinesterases in chemical adaptation, Insects, 14 (2), 194.
[15] Aroniadou-Anderjaska, V., Figueiredo, T.H., de Araujo Furtado, M., Pidoplichko, V.I., and Braga, M.F.M., 2023, Mechanisms of organophosphate toxicity and the role of acetylcholinesterase inhibition, Toxics, 11 (10), 866.
[16] Worek, F., Thiermann, H., and Wille, T., 2020, Organophosphorus compounds and oximes: A critical review, Arch. Toxicol., 94 (7), 2275–2292.
[17] Rahman, M.F., Siddiqui, M.K.J., and Jamil, K., 1999, Sub-chronic effect of neem-based pesticide (Vepacide) on acetylcholinesterase and ATPases in rat, J. Environ. Sci. Health, Part B, 34 (5), 873–884.
[18] Bangash, S.H., Ibrahim, M., Ali, A., Wei, C.Y., Hussain, A., Riaz, M., Ur Rehman, M.F., Ahmed, F., Al-Salahi, R., and Tang, W.W., 2025, A new natural Cyperol A together with five known compounds from Cyperus rotundus L.: Isolation, structure elucidation, DFT analysis, insecticidal and enzyme-inhibition activities and in silico study, RSC Adv., 15 (15), 11491–11502.
[19] Niazi, S.K., 2023, A critical analysis of the FDA’s omics-driven pharmacodynamic biomarkers to establish biosimilarity, Pharmaceuticals, 16 (11), 1556.
[20] Weth, F.R., Hoggarth, G.B., Weth, A.F., Paterson, E., White, M.P.J., Tan, S.T., Peng, L., and Gray, C., 2024, Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy, Br. J. Cancer, 130 (5), 703–715.
[21] Fu, L., Shi, S., Yi, J., Wang, N., He, Y., Wu, Z., Peng, J., Deng, Y., Wang, W., Wu, C., Lyu, A., Zeng, X., Zhao, W., Hou, T., and Cao, D., 2024, ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support, Nucleic Acids Res., 52 (W1), W422–W431.
[22] Sun, D., Gao, W., Hu, H., and Zhou, S., 2022, Why 90% of clinical drug development fails and how to improve it?, Acta Pharm. Sin. B, 12 (7), 3049–3062.
[23] Gorgulla, C., 2023, Recent developments in ultralarge and structure-based virtual screening approaches, Annu. Rev. Biomed. Data Sci., 6 (1), 229–258.
[24] Billones, J.B., Carrillo, M.C.O., Organo, V.G., Sy, J.B.A., Clavio, N.A.B., Macalino, S.J.Y., Emnacen, I.A., Lee, A.P., Ko, P.K.L., and Concepcion, G.P., 2017, In silico discovery and in vitro activity of inhibitors against Mycobacterium tuberculosis 7,8-diaminopelargonic acid synthase (Mtb BioA), Drug Des., Dev. Ther., 11, 563–574.
[25] Yu, Y., Xu, S., He, R., and Liang, G., 2023, Application of molecular simulation methods in food science: Status and prospects, J. Agric. Food Chem., 71 (6), 2684–2703.
[26] Mandlik, V., and Singh, S., 2016, Molecular docking and molecular dynamics simulation study of inositol phosphorylceramide synthase–inhibitor complex in leishmaniasis: Insight into the structure-based drug design, F1000Research, 5, 1610.
[27] Challapa-Mamani, M.R., Tomás-Alvarado, E., Espinoza-Baigorria, A., León-Figueroa, D.A., Sah, R., Rodriguez-Morales, A.J., and Barboza, J.J., 2023, Molecular docking and molecular dynamics simulations in relation to Leishmania donovani: An update and literature review, Trop. Med. Infect. Dis., 8 (10), 457.
[28] Liu, J., Su, M., Liu, Z., Li, J., Li, Y., and Wang, R., 2017, Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints, BMC Bioinf., 18 (1), 343.
[29] Akhoon, B.A., Tiwari, H., and Nargotra, A., 2019, “In Silico Drug Design Methods for Drug Repurposing” in In Silico Drug Design, Eds. Roy, K., Academic Press, Cambridge, MA, US, 47–84.
[30] Hähnke, V.D., Kim, S., and Bolton, E.E., 2018, PubChem chemical structure standardization, J. Cheminf., 10 (1), 36.
[31] Bento, A.P., Hersey, A., Félix, E., Landrum, G., Gaulton, A., Atkinson, F., Bellis, L.J., De Veij, M., and Leach, A.R., 2020, An open source chemical structure curation pipeline using RDKit, J. Cheminf., 12 (1), 51.
[32] Goodsell, D.S., Sanner, M.F., Olson, A.J., and Forli, S., 2021, The AutoDock suite at 30, Protein Sci., 30 (1), 31–43.
[33] Muhammed, T.M., and Aki-Yalcin, E., 2024, Molecular docking: Principles, advances, and its applications in drug discovery, Lett. Drug Des. Discovery, 21 (3), 480–495.
[34] Pradeepkiran, J.A., Sainath, S., Balne, P.K., and Bhaskar, M., 2021, “Computational modeling and evaluation of best potential drug targets through comparative modeling” in Brucella Melitensis, Academic Press, Cambridge, MA, US, 39–78.
[35] Shafqat, S., and Mahmood, T., 2023, Diversity, phylogeny and 3D protein modeling of family Acanthaceae based on RPS14 gene sequence in Pakistan, J. Anim. Plant Sci., 33 (2), 397–408.
[36] Daina, A., Michielin, O., and Zoete, V., 2017, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (1), 42717.
[37] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., 2004, UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., 25 (13), 1605–1612.
[38] BIOVIA, Dassault Systèmes, 2020, Discovery Studio Visualizer, Dassault Systèmes, San Diego, US.
[39] Almasabi, S.H.A., Almasoudi, H.H., Albargy, H., Alabbas, M.M.A., and Al-Mansour, F.S.H., 2025, Alternative use of droxidopa for treating cervical cancer: Inhibiting transferase, cell cycle signalling, and transport proteins via multitarget docking, DFT, MD simulations, and binding free energy studies, Med. Oncol., 42 (5), 143.
[40] Mateev, E., Irfan, A., Mateeva, A., Kondeva-Burdina, M., Georgieva, M., and Zlatkov, A., 2024, In silico and in vitro screening of pyrrole-based hydrazide-hydrazones as novel acetylcholinesterase inhibitors, Pharmacia, 71, 1–7.
[41] Soudani, W., Hadjadj-Aoul, F.Z., Bouachrine, M., and Zaki, H., 2021, Molecular docking of potential cytotoxic alkylating carmustine derivatives 2-chloroethylnitrososulfamides analogues of 2-chloroethylnitrosoureas, J. Biomol. Struct. Dyn., 39 (12), 4256–4269.
[42] Chaudhary, V., Chaturvedi, S., Wadhwa, A., Verma, P., Gautam, D., Sharma, D., Garg, A., Singh, V., Kumar, R., and Mishra, A.K., 2025, Homology modeling, molecular docking and MD simulations study of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives as sigma-2 receptor ligands, J. Biomol. Struct. Dyn., In press, 1–15.
[43] Ali, S., Ali, U., Safi, K., Naz, F., Jan, M.I., Iqbal, Z., Ali, T., Ullah, R., and Bari, A., 2024, In silico homology modeling of dengue virus non-structural 4B (NS4B) protein and its molecular docking studies using triterpenoids, BMC Infect. Dis., 24 (1), 688.
[44] Nhlapho, S., Nyathi, M.H.L., Ngwenya, B.L., Dube, T., Telukdarie, A., Munien, I., Vermeulen, A., and Chude-Okonkwo, U.A.K., 2024, Druggability of pharmaceutical compounds using Lipinski rules with machine learning, Sci. Pharm., 3 (4), 177–192.
[45] Raghavendra, N., Kumar, B.R.P., Sasmal, P., Teli, G., Pal, R., Gurubasavaraja Swamy, P., and Sajeev Kumar, B., 2023, Designing Studies in Pharmaceutical and Medicinal Chemistry, in The Quintessence of Basic and Clinical Research and Scientific Publishing, Springer Nature Singapore, Singapore, 125–148.
[46] Tanchuk, V.Y., Tanin, O., Vovk, A.I., and Poda, G., 2015, A new scoring function for molecular docking based on AutoDock and AutoDock Vina, Curr. Drug Discovery Technol., 12 (3), 170–178.
[47] Singh, M., Steinke, I., and Amin, R.H., 2024, Structure-based computer-aided drug design to identify potential lead molecules for asparaginyl endopeptidase inhibitors, J. Biomol. Struct. Dyn., In press, 1–19.
[48] Ferreira, L.G., Dos Santos, R.N., Oliva, G., and Andricopulo, A.D., 2015, Molecular docking and structure-based drug design strategies, Molecules, 20 (7), 13384–13421.
[49] Hildebrand, P.W., Rose, A.S., and Tiemann, J.K., 2019, Bringing molecular dynamics simulation data into view, Trends Biochem. Sci., 44 (11), 902–913.
[50] Rasheed, M.A., Iqbal, M.N., Saddick, S., Ali, I., Khan, F.S., Kanwal, S., Ahmed, D., Ibrahim, M., Afzal, U., and Awais, M., 2021, Identification of lead compounds against Scm (fms10) in Enterococcus faecium using computer aided drug designing, Life, 11 (2), 77.
[51] Choudhary, M.I., Shaikh, M., tul-Wahab, A., and ur-Rahman, A., 2020, In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation, PLoS One, 15 (7), e0235030.
[52] Cordero, A.M.F., and Gonzales, A.A., 2024, Using multiscale molecular modeling to analyze possible NS2b-NS3 protease inhibitors from medicinal plants endemic to the Philippines, Curr. Issues Mol. Biol., 46 (7), 7592–7618.
[53] Kandeel, M., and El-Deeb, W., 2022, Omicron variant receptor-binding domain phylogenetics and molecular dynamics, Comput. Biol. Med., 146, 105633.
[54] Kikiowo, B., Oni, E.A., Iwaloye, O., Inyang, O.K., Alade, A.A., Akinwotu, S.T., and Oluwalade, O.R., 2021, Molecular interaction and inhibitory activity of dandelion’s compounds on nucleoprotein: A therapeutic intervention in Lassa fever, Biointerface Res. Appl. Chem., 11 (5), 12573–12583.
[55] Adasme, M.F., Linnemann, K.L., Bolz, S.N., Kaiser, F., Salentin, S., Haupt, V.J., and Schroeder, M., 2021, PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA, Nucleic Acids Res., 49 (W1), W530–W534.
[56] Scholz, C., Knorr, S., Hamacher, K., and Schmidt, B., 2015, DOCKTITE: A highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment, J. Chem. Inf. Model., 55 (2), 398–406.
[57] Djinovic-Carugo, K., and Carugo, O., 2015, Missing strings of residues in protein crystal structures, Intrinsically Disord. Proteins, 3 (1), e1095697.
[58] Sahinidis, N.V., 2009, Optimization techniques in molecular structure and function elucidation, Comput. Chem. Eng., 33 (12), 2055
[59] Colovos, C., and Yeates, T., 1993, Verification of protein structures: Patterns of nonbonded atomic interactions, Protein Sci., 2 (9), 1511–1519
[60] Eisenberg, D., Lüthy, R., and Bowie, J.U., 1997, VERIFY3D: Assessment of protein models with three-dimensional profiles, Methods Enzymol., 277, 396–404.
[61] Wiederstein, M., and Sippl, M.J., 2007, ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Res., 35 (Suppl. 2), W407–W410.
[62] Zhang, Y., Yang, B., Li, J., Liu, M., and Liu, Z., 2017, Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål, Insect Mol. Biol., 26 (4), 453–460.
[63] Kim, Y.H., and Lee, S.H., 2013, Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta?, Insect Biochem. Mol. Biol., 43 (1), 47–53.
[64] Herrera-Mayorga, V., Guerrero-Sánchez, J.A., Méndez-Álvarez, D., Paredes-Sánchez, F.A., Rodríguez-Duran, L.V., Niño-García, N., Paz-González, A.D., and Rivera, G., 2022, Insecticidal activity of organic extracts of Solidago graminifolia and its main metabolites (quercetin and chlorogenic acid) against Spodoptera frugiperda: An in vitro and in silico approach, Molecules, 27 (10), 3325.
[65] Kukreja, S., Yadav, A.K., Nehe, S., and Dharavath, S., 2024, Employing the trifluoromethyl group on a 5/5 fused triazolo[4,3-b][1,2,4]triazole backbone: A viable strategy for attaining balanced energetics, Org. Lett., 26 (49), 10611–10615.
[66] Li, B., Chen, D., Wang, J., Yan, Z., Jiang, L., Deliang D., He, J., Luo, Z., Zhang, J., and Yuan, F., 2014, MOFzyme: Intrinsic protease-like activity of Cu-MOF, Sci. Rep., 4 (1), 6759.
[67] Li, M., Gao, X., Lan, M., Liao, X., Su, F., Fan, L., Zhao, Y., Hao, X., Wu, G., and Ding, X., 2020, Inhibitory activities of flavonoids from Eupatorium adenophorum against acetylcholinesterase, Pestic. Biochem. Physiol., 170, 104701.
[68] Yin, W., Wang, Y., Liu, L., and He, J., 2019, Biofilms: The microbial “protective clothing” in extreme environments, Int. J. Mol. Sci., 20 (14), 3423.
[69] Ishaq, M., Tahira, R., Javed, A., Jamal, A., Raja, M.U., Munir, A., and ur-Rehman, A., 2017, Lemongrass essential oil as an alternate approach to manage seed associated fungi of wheat and rice, Int. J. Agric. Biol., 19, 1301–1306.
[70] Nittinger, E., Inhester, T., Bietz, S., Meyder, A., Schomburg, K.T., Lange, G., Klein, R., and Rarey, M., 2017, Large-scale analysis of hydrogen bond interaction patterns in protein–ligand interfaces, J. Med. Chem., 60 (10), 4245–4257.
[71] da Fonseca, A.L., Nunes, R.R., Braga, V.M.L., Comar Jr, M., Alves, R.J., de Pilla Varotti, F., and Taranto, A.G., 2016, Docking, QM/MM, and molecular dynamics simulations of the hexose transporter from Plasmodium falciparum (PfHT), J. Mol. Graphics Modell., 66, 174–186.
[72] Heitmeier, M.R., Hresko, R.C., Edwards, R.L., Prinsen, M.J., Ilagan, M.X.G., Odom John, A.R., and Hruz, P.W., 2019, Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein engineering, PLoS One, 14 (5), e0216457.
[73] Lipinski, C.A., 2000, Drug-like properties and the causes of poor solubility and poor permeability, J. Pharmacol. Toxicol. Methods, 44 (1), 235–249.
[74] Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., and Kopple, K.D., 2002, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem., 45 (12), 2615–2623.
[75] Chang, L.C.W., Spanjersberg, R.F., von Frijtag Drabbe Künzel, J.K., Mulder-Krieger, T., van den Hout, G., Beukers, M.W., Brussee, J., and IJzerman, A.P., 2004, 2,4,6-Trisubstituted pyrimidines as a new class of selective adenosine A1 receptor antagonists, J. Med. Chem., 47 (26), 6529–6540.
[76] Ertl, P., Rohde, B., and Selzer, P., 2000, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem., 43 (20), 3714–3717.
[77] Paramashivam, S.K., Elayaperumal, K., Bhagavan Natarajan, B., Devi Ramamoorthy, M., Balasubramanian, S., and Dhiraviam, K.N., 2015, In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases, Bioinformation, 11 (2), 73–84.
[78] Clark, D.E., 1999, Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption, J. Pharm. Sci., 88 (8), 807–814.
[79] Variya, B.C., Modi, S.J., Savjani, J.K., and Patel, S.S., 2016, In silico molecular docking and pharmacokinetic prediction of gallic acid derivatives as PPAR-γ agonists, Int. J. Pharm. Sci., 9 (1), 102–107.
[80] Ya'u Ibrahim, Z., Uzairu, A., Shallangwa, G., and Abechi, S., 2020, Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels, Sci. Afr., 10, e00570.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.










