In Silico Study of Alkaloid Compounds from Sida rhombifolia (Sidaguri) as Antimalarial Agents Targeting Plasmodium falciparum Dihydrofolate Reductase

https://doi.org/10.22146/ijc.106340

Arfansyah Arfansyah(1), Anisa Sepyana(2), Bahrun Bahrun(3), Muh Ade Artasasta(4), Herlina Rasyid(5*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan km 10, Makassar 90245, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan km 10, Makassar 90245, Indonesia
(3) Research Center for Chemistry, National Research and Innovation Agency (BRIN), KST BJ Habibie, Banten 15314, Indonesia
(4) Biotechnology Program, Department of Applied Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan km 10, Makassar 90245, Indonesia
(*) Corresponding Author

Abstract


Malaria, caused by the Plasmodium parasite, represents a significant global health challenge, with approximately 229 million cases reported in 2020. Current treatments include artemisinin-based combination therapy; however, drug resistance poses serious issues. Natural products, including alkaloids from Sida rhombifolia, particularly cryptolepine, effectively inhibit Plasmodium falciparum through DNA intercalation. Research indicates that mutations in the PfDHFR enzyme of P. falciparum contribute to drug resistance, highlighting the urgent need for new inhibitors. A literature review combined with SwissADME, toxicology predictions, and molecular docking methods identified 11-cryptolepine carboxylic acid (B1) and N-trans-feruloyl tyramine (B11) as potential new inhibitors. The compounds exhibited binding energies of −7.22 and −8.41 kcal/mol, which are close to the native ligand (−7.31 kcal/mol). Additionally, they demonstrate favorable drug-likeness properties, indicating their potential as viable candidates for drug development. The molecular dynamics simulation for 100 ns was conducted to observe molecular interactions in a specific system dynamically. It was found that ligand B1 has better stability compared to ligand B11. This compound demonstrates significant potential for advancing malaria treatment strategies. Further research and clinical evaluation are warranted to fully realize their potential and translate these findings into effective clinical interventions for combating malaria globally.


Keywords


Sida rhombifolia; antimalaria; PfDHFR enzyme; molecular docking; molecular dynamics

Full Text:

Full Text PDF


References

[1] Zekar, L., and Sharman, T., 2025, Plasmodium falciparum Malaria, StatPearls Publishing, Treasure Island, FL, US.

[2] WHO, 2024, World Malaria Report 2024: Addressing Inequity in the Global Malaria Response, World Health Organization, Geneva.

[3] Handayani, L., and Fitriani, I., 2025, Review of Plamodium vivax malaria in Indonesia and Malaysia: Epidemiology of the infection and the presence of the vector across time, Trop. J. Health Sci., 32 (2), 47–56.

[4] Alghamdi, J.M., Al-Qahtani, A.A., Alhamlan, F.S., and Al-Qahtani, A.A., 2024, Recent advances in the treatment of malaria, Pharmaceutics, 16 (11), 1416.

[5] Ahmad, I., Khan, H., Amin, M.U., Khalid, S., Behl, T., and Ur Rahman, N., 2021, An overview on the anticancer potential of punarnavine: Prediction of drug-like properties, Oncologie, 23 (3), 321–333.

[6] Bernardini, S., Tiezzi, A., Laghezza Masci, V., and Ovidi, E., 2018, Natural products for human health: An historical overview of the drug discovery approaches, Nat. Prod. Res., 32 (16), 1926–1950.

[7] Ain, Q.T., Saleem, N., Munawar, N., Nawaz, R., Naseer, F., Ahmed, S., and Scotti, M., 2024, Quest for malaria management using natural remedies, Front. Pharmacol., 15, 1359890.

[8] Ariefta, N.R., Sofian, F.F., Aboshi, T., Kuncoro, H., Dinata, D.I., Shiono, Y., and Nishikawa, Y., 2024, Evaluation of the antiplasmodial and anti-Toxoplasma activities of several Indonesian medicinal plant extracts, J. Ethnopharmacol., 331, 118269.

[9] Liu, K.C.S.C., Yang, S.L., Roberts, M.F., Elford, B.C., and Phillipson, J.D., 1992, Antimalarial activity of Artemisia annua flavonoids from whole plants and cell cultures, Plant Cell Rep., 11 (12), 637–640.

[10] Forkuo, A.D., Ansah, C., Mensah, K.B., Annan, K., Gyan, B., Theron, A., Mancama, D., and Wright, C.W., 2017, In vitro anti-malarial interaction and gametocytocidal activity of cryptolepine, Malar. J., 16 (1), 496.

[11] Uzor, P.F., 2020, Alkaloids from plants with antimalarial activity: A review of recent studies, Evidence-Based Complementary Altern. Med., 2020 (1), 8749083.

[12] Oliveira, M.S., Chaves, O.S., Cordeiro, L.V., Gomes, A.N.P., Fernandes, D.A., Teles, Y.C.F., da Silva, T.M.S., Freire, K.R.L., Lima, E.O., Agra, M.F., and de Souza, M.F.V., 2023, Indoquinoline alkaloids from Sida rhombifolia (L.) (Malvaceae) and antimicrobial evaluation of cryptolepinone derivatives, J. Braz. Chem. Soc., 34 (2), 220–227.

[13] Aminah, N.S., Laili, E.R., Rafi, M., Rochman, A., Insanu, M., and Tun, K.N.W., 2021, Secondary metabolite compounds from Sida genus and their bioactivity, Heliyon, 7 (4), e06682.

[14] Kamdoum, B.C., Simo, I., Wouamba, S.C.N., Tchatat Tali, B.M., Ngameni, B., Fotso, G.W., Ambassa, P., Fabrice, F.B., Lenta, B.N., and Sewald, N., 2022, Chemical constituents of two Cameroonian medicinal plants: Sida rhombifolia L. and Sida acuta Burm. f. (Malvaceae) and their antiplasmodial activity, Nat. Prod. Res., 36 (20), 5311–5318.

[15] Jiang, T., Chen, J., Fu, H., Wu, K., Yao, Y., Eyi, J.U.M., Matesa, R.A., Obono, M.M.O., Du, W., Tan, H., Lin, M., and Li, J., 2019, High prevalence of Pfdhfr-Pfdhps quadruple mutations associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea, Malar. J., 18 (1), 101.

[16] Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., 2009, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem., 30 (16), 2785–2791.

[17] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., and Hutchison, G.R., 2012, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminf., 4 (1), 17.

[18] BIOVIA, Dassault Systèmes, 2020, Discovery Studio Visualizer ver. 21.1.0.20298, Dassault Systèmes, San Diego, US.

[19] Huang, C.C., Couch, G.S., Pettersen, E.F., and Ferrin, T., 1996, Chimera: An extensible molecular modeling application constructed using standard components, Pac. Symp. Biocomput. 96, 1 (724).

[20] Land, H., and Humble, M.S., 2018, YASARA: A tool to obtain structural guidance in biocatalytic investigations, Methods Mol. Biol., 1685, 43–67.

[21] Daina, A., Michielin, O., and Zoete, V., 2017, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (1), 42717.

[22] Banerjee, P., Kemmler, E., Dunkel, M., and Preissner, R., 2024, ProTox 3.0: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res., 52 (W1), W513–W520.

[23] Rajendran, P., Rathinasabapathy, R., Chandra Kishore, S., and Bellucci, S., 2023, Computational-simulation-based behavioral analysis of chemical compounds, J. Compos. Sci., 7 (5), 196.

[24] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., 2004, UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., 25 (13), 1605–1612.

[25] Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D. A., 2004, Development and testing of a general Amber force field, J. Comput. Chem., 25 (9), 1157–1174.

[26] Dash, R., Ali, M.C., Dash, N., Azad, M.A.K., Hosen, S.M.Z., Hannan, M.A., and Moon, I.S., 2019, Structural and dynamic characterizations highlight the deleterious role of SULT1A1 R213H polymorphism in substrate binding, Int. J. Mol. Sci., 20 (24), 6256.

[27] Mark, P., and Nilsson, L., 2001, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A, 105 (43), 9954–9960.

[28] Gohlke, H., Hendlich, M., and Klebe, G., 2000, Knowledge-based scoring function to predict protein-ligand interactions, J. Mol. Biol., 295 (2), 337–356.

[29] Laili, E.R., Aminah, N.S., Kristanti, A.N., Wardana, A.P., Rafi, M., Rohman, A., Insanu, M., and Tun, K.N.W., 2022, Comparative study of Sida rhombifolia from two different locations, Rasayan J. Chem., 15 (1), 642–650.

[30] Karomah, A.H., Rafi, M., Septaningsih, A.A., Ilmiawati, A., Syafitri, U.D., Aminah, N.S., Insanu, M., and Rohman, A., 2023, UHPLC-Q-Orbitrap HRMS-based untargeted metabolomics of Sida rhombifolia leaves and stem extracts, HAYATI J. Biosci., 30 (4), 770–778.

[31] Silvani, D., Wahyuni, W.T., Syafitri, U.D., Ilmiawati, A., Septaningsih, D.A., Insanu, M., Aminah, N.S., Rohman, A., and Rafi, M., 2023, LC-HRMS and FTIR-based metabolomics analysis and xanthine oxidase inhibitory evaluation of Sida rhombifolia with different drying methods, Biocatal. Agric. Biotechnol., 52, 102833.

[32] Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., 2001, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Delivery Rev., 46 (1), 3–26.

[33] Lipinski, C.A., 2004, Lead- and drug-like compounds: The rule-of-five revolution, Drug Discovery Today: Technol., 1 (4), 337–341.

[34] Goodwin, J.T., Conradi, R.A., Ho, N.F.H., and Burton, P.S., 2001, Physicochemical determinants of passive membrane permeability: Role of solute hydrogen-bonding potential and volume, J. Med. Chem., 44 (22), 3721–3729.

[35] Ahmad, S., Waheed, Y., Ismail, S., Bhatti, S., Abbasi, S.W., and Muhammad, K., 2021, Structure-based virtual screening identifies multiple stable binding sites at the RecA domains of SARS-CoV-2 helicase enzyme, Molecules, 26 (5), 1446.

[36] Petukh, M., Stefl, S., and Alexov, E., 2013, The role of protonation states in ligand-receptor recognition and binding, Curr. Pharm. Des., 19 (23), 4182–4190.

[37] Gohlke, H., and Klebe, G., 2002, Approaches to the description and prediction of the binding affinity of small‐molecule ligands to macromolecular receptors, Angew. Chem., Int. Ed., 41 (15), 2644–2676.

[38] Fang, Y., 2012, Ligand–receptor interaction platforms and their applications for drug discovery, Expert Opin. Drug Discovery, 7 (10), 969–988.

[39] Di Stefano, E., Oliviero, T., and Udenigwe, C.C., 2018, Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors, Curr. Opin. Food Sci., 20, 7–12.

[40] Glyakina, A.V., and Galzitskaya, O.V., 2020, How quickly do proteins fold and unfold, and what structural parameters correlate with these values ?, Biomolecules, 10 (2), 197.

[41] Bouricha, E.M., Hakmi, M., Akachar, J., Zouaidia, F., and Ibrahimi, A., 2022, In-silico identification of potential inhibitors targeting the DNA binding domain of estrogen receptor α for the treatment of hormone therapy-resistant breast cancer, J. Biomol. Struct. Dyn., 40 (11), 5203–5210.

[42] Bulusu, G., and Desiraju, G.R., 2020, Strong and weak hydrogen bonds in protein–ligand recognition, J. Indian Inst. Sci., 100 (1), 31–41.



DOI: https://doi.org/10.22146/ijc.106340

Article Metrics

Abstract views : 5030 | views : 3524


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.