Synthesis of Fe3O4/Hydroxyapatite Nanocomposites: Structural, Surface, and Magnetic Characterization
Ahmad Fadli(1), Agung Prabowo(2*), Drastinawati Drastinawati(3), Bima Wandika Putra(4), Heni Sugesti(5), Febriyati Puspasari(6)
(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Riau, Kampus Binawidya, Jl. HR. Soebrantas Km. 12.5, Simpang Baru, Panam Pekanbaru, Riau 28293, Indonesia
(2) Department of Chemical Engineering, Politeknik Negeri Samarinda, Jl. Dr. Cipto Mangunkusumo, Samarinda 75131, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Riau, Kampus Binawidya, Jl. HR. Soebrantas Km. 12.5, Simpang Baru, Panam Pekanbaru, Riau 28293, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering, Universitas Riau, Kampus Binawidya, Jl. HR. Soebrantas Km. 12.5, Simpang Baru, Panam Pekanbaru, Riau 28293, Indonesia
(5) Department of Chemical Engineering, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar, Palembang 30139, Indonesia
(6) Department of Chemical Engineering, Politeknik Negeri Samarinda, Jl. Dr. Cipto Mangunkusumo, Samarinda 75131, Indonesia
(*) Corresponding Author
Abstract
Magnetite/hydroxyapatite (Fe3O4/HA) nanocomposites are promising materials for biomedical applications, particularly in targeted drug delivery. This study investigates the effects of hydrothermal reaction time and FeCl3 precursor concentration on the structural, morphological, and magnetic properties of Fe3O4/HA composite powders synthesized via a one-pot hydrothermal method. The resulting composites exhibit biphasic structures comprising magnetite (cubic phase) and hydroxyapatite (hexagonal phase) crystallites, with average sizes ranging from 22 to 30 nm. Both increased reaction time and FeCl3 concentration contributed to the growth of crystal size. A notable enhancement in specific surface area was observed, increasing from 48.21 to 67.41 m2/g as FeCl3 concentration decreased from 0.15 to 0.05 M at a fixed reaction time of 15 h. Magnetic characterization revealed that the composites exhibited superparamagnetic behavior, with the highest saturation magnetization (Ms) reaching 17.27 emu/g. These results demonstrate that tuning synthesis parameters can optimize the structural and magnetic properties of Fe3O4/HA nanocomposites, making them strong candidates for use in controlled drug delivery systems.
Keywords
Full Text:
Full Text PDFReferences
[1] Kaczmarek, K., Mrówczyński, R., Hornowski, T., Bielas, R., and Józefczak, A., 2019, The effect of tissue-mimicking phantom compressibility on magnetic hyperthermia, Nanomaterials, 9 (5), 803.
[2] Obaidat, I.M., Narayanaswamy, V., Alaabed, S., Sambasivam, S., and Muralee Gopi, C.V., 2019, Principles of magnetic hyperthermia: A focus on using multifunctional hybrid magnetic nanoparticles, Magnetochemistry, 5 (4), 67.
[3] Islam, K., Haque, M., Kumar, A., Hoq, A., Hyder, F., and Hoque, S.M., 2020, Manganese ferrite nanoparticles (MnFe2O4): Size dependence for hyperthermia and negative/positive contrast enhancement in MRI, Nanomaterials, 10 (11), 2297.
[4] Redolfi Riva, E., Sinibaldi, E., Grillone, A.F., Del Turco, S., Mondini, A., Li, T., Takeoka, S., and Mattoli, V., 2020, Enhanced in vitro magnetic cell targeting of doxorubicin-loaded magnetic liposomes for localized cancer therapy, Nanomaterials, 10 (11), 2104.
[5] Iglesias, C.A.M., de Araújo, J.C.R., Xavier, J., Anders, R.L., de Araújo, J.M., da Silva, R.B., Soares, J.M., Brito, E.L., Streck, L., Fonseca, J.L.C., Plá Cid, C.C., Gamino, M., Silva, E.F., Chesman, C., Correa, M.A., de Medeiros, S.N., and Bohn, F., 2021, Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process, Sci. Rep., 11 (1), 11867.
[6] Bai, S., Hou, S., Chen, T., Ma, X., Gao, C., and Wu, A., 2024, Magnetic nanoparticle-mediated hyperthermia: From heating mechanisms to cancer theranostics, Innovation Mater., 2 (1), 100051.
[7] Gavilán, H., Avugadda, S.K., Fernández-Cabada, T., Soni, N., Cassani, M., Mai, B.T., Chantrell, R., and Pellegrino, T., 2021, Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer, Chem. Soc. Rev., 50 (20), 11614–11667.
[8] Silveira, M.L.D.C., Silva, I.M.B., and Magdalena, A.G., 2021, Synthesis and characterization of Fe3O4-NH2 and Fe3O4-NH2-chitosan nanoparticles, Cerâmica, 67, 295–300.
[9] Zheltova, V., Vlasova, A., Bobrysheva, N., Abdullin, I., Semenov, V., Osmolowsky, M., Voznesenskiy, M., and Osmolovskaya, O., 2020, Fe3O4@HAp core–shell nanoparticles as MRI contrast agent: Synthesis, characterization and theoretical and experimental study of shell impact on magnetic properties, Appl. Surf. Sci., 531, 147352.
[10] Zhang, L., Xu, H., Cheng, Z., Wei, Y., Sun, R., Liang, Z., Hu, Y., Zhao, L., Lian, X., Li, X., and Huang, D., 2021, Human cancer cell membrane-cloaked Fe3O4 nanocubes for homologous targeting improvement, J. Phys. Chem. B, 125 (27), 7417–7426.
[11] Schütz, M.B., Renner, A.M., Ilyas, S., Lê, K., Guliyev, M., Krapf, P., Neumaier, B., and Mathur, S., 2021, 18F-Labeled magnetic nanovectors for bimodal cellular imaging, Biomater. Sci., 9 (13), 4717–4727.
[12] Mylkie, K., Nowak, P., Rybczynski, P., and Ziegler-Borowska, M., 2021, Polymer-coated magnetite nanoparticles for protein immobilization, Materials, 14 (2), 248.
[13] Sharma, A., Cornejo, C., Mihalic, J., Geyh, A., Bordelon, D.E., Korangath, P., Westphal, F., Gruettner, C., and Ivkov, R., 2018, Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles, Sci. Rep., 8 (1), 4916.
[14] Albutt, N., Sonsupup, S., Sinprachim, T., and Thonglor, P., 2024, Synthesis of magnetic nanoparticles coated with chitosan for biomedical applications, Key Eng. Mater., 1005, 49–57.
[15] Vdoviaková, K., Jenca, A., Jenca, A., Danko, J., Kresáková, L., Simaiová, V., Reichel, P., Rusnák, P., Pribula, J., Vrzgula, M., Askin, S.J., Giretová, M., Briancin, J., and Medvecký, L., 2023, Regenerative potential of hydroxyapatite-based ceramic biomaterial on mandibular cortical bone: An in vivo study, Biomedicines, 11 (3), 877.
[16] Mo, X., Zhang, D., Liu, K., Zhao, X., Li, X., and Wang, W., 2023, Nano-hydroxyapatite composite scaffolds loaded with bioactive factors and drugs for bone tissue engineering, Int. J. Mol. Sci., 24 (2), 1291.
[17] Ghazagh, P., and Frounchi, M., 2024, Hydroxyapatite/alginate/polyvinyl alcohol/agar composite double-network hydrogels as injectable drug delivery microspheres, Chem. Pap., 78 (5), 2967–2976.
[18] Nikolova, M.P., and Chavali, M.S., 2020, Metal oxide nanoparticles as biomedical materials, Biomimetics, 5 (2), 27.
[19] Roudsari, S., Rad‐Moghadam, K., and Hosseinjani‐Pirdehi, H., 2019, Dual complex of amylose with iodine and magnetite nano-crystallites: Enhanced superparamagnetic and catalytic performance for synthesis of spiro-oxindoles, Appl. Organomet. Chem., 33 (8), e4993.
[20] Hu, Y., Wang, Q., Chen, S., Xu, Z., Miao, M., and Zhang, D., 2020, Flexible supercapacitors fabricated by growing porous NiCo2O4in situ on a carbon nanotube film using a hyperbranched polymer template, ACS Appl. Energy Mater., 3 (4), 4043–4050.
[21] Puthumana, G., and Rahul, M.S., 2014, An investigation on finishing technique using abrasives in the presence of a magnetic field, JMS, 1 (4), 1–7.
[22] Qiu, G., Guo, Y., Xu, J., Jia, W., Guo, S., Wang, H., Guo, F., and Wu, J., 2022, Hierarchical porous carbon derived from recycled bamboo waste as supercapacitors electrodes based on FeCl3‐catalyzed hydrothermal pretreatment: Pore regulation and high‐performance analysis, Int. J. Energy Res., 46 (15), 22971–22990.
[23] Fadli, A., Amri, A., Iwantono, I., Adnan, A., Sunarno, S., Sukoco, S., and Mayangsari, M., 2020, The oriented attachment model applied on crystal growth of hydrothermal derived magnetite nanoparticles, Indones. J. Chem., 20 (2), 379–385.
[24] Liu, M.L., Chen, H.F., Li, H.J., Cai, Z.Y., and Ding, J., 2019, Hydrothermal synthesis of Co(OH)2 microspheres, Solid State Phenom., 298, 121–127.
[25] Fadli, A., Amri, A., Sari, E.O., and Adnan, A., 2017, Crystal-growth kinetics of magnetite (Fe3O4) nanoparticles using the Ostwald ripening model, Int. J. Technol., 8 (8), 291–319.
[26] Wang, Y., Bai, J., Zuo, J., Peng, H., Hou, H., Wang, H., and Lan, N., 2023, Hydrothermal preparation of cubic sodium zirconium phosphate crystals, J. Phys.: Conf. Ser., 2539 (1), 012048.
[27] Zhang, B., Hu, R., Sun, D., Wu, T., and Li, Y., 2018, Fabrication of magnetite-graphene oxide/MgAl-layered double hydroxide composites for efficient removal of emulsified oils from various oil-in-water emulsions, J. Chem. Eng. Data, 63 (12), 4689–4702.
[28] Alamgholiloo, H., Rostamnia, S., Zhang, K., Lee, T.H., Lee, Y.S., Varma, R.S., Jang, H.W., and Shokouhimehr, M., 2020, Boosting aerobic oxidation of alcohols via synergistic effect between TEMPO and a composite Fe3O4/Cu-BDC/GO nanocatalyst, ACS Omega, 5 (10), 5182–5191.
[29] Azadi, G., Kazemi, F., and Firouzeh, E., 2021, Visible‐light‐driven photocatalytic Suzuki–Miyaura coupling reaction using novel retrievable magnetic photocatalyst, ChemistrySelect, 6 (4), 630–639.
[30] Raso, R., García, L., Ruiz, J., Oliva, M., and Arauzo, J., 2020, Study of Ni/Al-Fe catalyst stability in the aqueous phase hydrogenolysis of glycerol, Catalysts, 10 (12), 1482.
[31] Hanasaki, M., Nagata, F., Miyajima, T., and Kato, K., 2018, Controlling particle size of poly(lactic acid)/hydroxyapatite nanoparticles, Trans. Mater. Res. Soc. Jpn., 43 (3), 135–138.
[32] Mehta, M., Bui, T.A., Yang, X., Aksoy, Y., Goldys, E.M., and Deng, W., 2023, Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development, ACS Mater. Au, 3 (6), 600–619.
[33] Patel, P., Garala, K., Singh, S., Prajapati, B.G., and Chittasupho, C., 2024, Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy, Pharmaceuticals, 17 (3), 329.
[34] Tripathi, A.D., Labh, Y., Katiyar, S., Singh, A.K., Chaturvedi, V.K., and Mishra, A., 2024, Folate-mediated targeting and controlled release: PLGA-encapsulated mesoporous silica nanoparticles delivering capecitabine to pancreatic tumor, ACS Appl. Bio Mater., 7 (12), 7838–7851.
[35] Ramirez, P.D., Lee, C., Fedderwitz, R., Clavijo, A.R., Barbosa, D.P.P., Julliot, M., Vaz-Ramos, J., Begin, D., Le Calvé, S., Zaloszyc, A., Choquet, P., Soler, M.A.G., Mertz, M., Kofinas, P., Piao, Y., and Begin-Colin, S., 2023, Phosphate capture enhancement using designed iron oxide-based nanostructures, Nanomaterials, 13 (3), 587.
[36] Ajinkya, N., Yu, X., Kaithal, P., Luo, H., Somani, P., and Ramakrishna, S., 2020, Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present and future, Materials, 13 (20), 4644.
[37] Fang, Y., Kim, E., and Strathmann, T.J., 2018, Mineral- and base-catalyzed hydrolysis of organophosphate flame retardants: Potential major fate-controlling sink in soil and aquatic environments, Environ. Sci. Technol., 52 (4), 1997–2006.
[38] Cepan, C., Segneanu, A.E., Grad, O., Mihailescu, M., Cepan, M., and Grozescu, I., 2021, Assessment of the different type of materials used for removing phosphorus from wastewater, Materials, 14 (16), 4371.
[39] Zhao, Q., Xing, Y., Liu, Z., Ouyang, J., and Du, C., 2018, Synthesis and characterization of modified BiOCl and their application in adsorption of low-concentration dyes from aqueous solution, Nanoscale Res. Lett., 13 (1), 69.
[40] Ganapathe, L.S., Mohamed, M.A., Mohamad Yunus, R., and Berhanuddin, D.D., 2020, Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalization, Magnetochemistry, 6 (4), 68.
[41] Garskaite, E., Stoll, S.L., Forsberg, F., Lycksam, H., Stankeviciute, Z., Kareiva, A., Quintana, A., Jensen, C.J., Liu, K., and Sandberg, D., 2021, The accessibility of the cell wall in Scots pine (Pinus sylvestris L.) sapwood to colloidal Fe3O4 nanoparticles, ACS Omega, 6 (33), 21719–21729.
[42] Yu, J., Xiao, T., Wang, X., Zhou, X., Wang, X., Peng, L., Zhao, Y., Wang, J., Chen, J., Yin, H., and Wu, W., 2019, A controllability investigation of magnetic properties for FePt alloy nanocomposite thin films, Nanomaterials, 9 (1), 53.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.












