Utilization of Cellulose from Pineapple Leaf Fibers as Nanofiller in Polyvinyl Alcohol-Based Film

https://doi.org/10.22146/ijc.21162

Kendri Wahyuningsih(1), Evi Savitri Iriani(2*), Farah Fahma(3)

(1) Indonesian Center for Agricultural Postharvest Research and Development Jl. Tentara Pelajar No.12 Cimanggu-Bogor 16114, West Java
(2) Indonesian Center for Agricultural Postharvest Research and Development Jl. Tentara Pelajar No.12 Cimanggu-Bogor 16114, West Java
(3) Faculty of Agricultural Technology, Bogor Agricultural University, Dramaga, Bogor 16002, West Java
(*) Corresponding Author

Abstract


 

Cellulose from pineapple leaf fibers as one of the natural polymer which has biodegradable property in a nanometer’s scale, can be formed as a filler in composite of Poly(vinyl) Alcohol/PVA is expected to increase the physical, thermal, and barrier properties of composite films similar to conventional plastic. The aim of this study was to examine the effect of fibrillation of cellulose fibers from pineapple leaf fibers using a combined technique of chemical-mechanical treatments, to investigate the reinforcing effect of concentration of nanocellulose fibrils in the polyvinyl alcohol (PVA) matrix on physical properties, thermal properties, water vapor transmission rate, light transmittance and morphological with and without addition of glycerol. Nanocellulose was made from cellulose of pineapple leaf fiber using wet milling (Ultra Fine Grinder). The composite film production was carried out by using casting solution method by mixing PVA solution with nanocellulose (10-50%) and glycerol (0-1%). The characterization of film covered physical properties (thickness, moisture content and density), thermal properties, permeability (WVTR), light transmittance, morphology, and crystallinity. Nanocellulose from pineapple leaf fibers was produced by Ultra Fine Grinder shows that the size reduction process was accurate. Nanocellulose addition on PVA composite film was affected to increasing the physical, thermal, and barrier properties. Meanwhile, decreasing the percentage of composite film transmittance, thus the transparency decrease (opaque). Water vapor transmission rate (WVTR) the film was increased with increasing glycerol concentration, but the physical and thermal properties was decreased.

Keywords


nanocellulose; physical properties; thermal properties; barrier properties, glycerol

Full Text:

Full Text PDF


References

[1] Mallick, P.K., 1993, Fiber-reinforced composites materials, manufacturing and design, Marcel Dekker, New York.

[2] Habibi, Y., Lucia, L.A., and Rojas, O.J., 2010, J. Chem. Rev., 110 (6), 3479–3500.

[3] Ashori, A., 2008, Bioresour. Technol., 99 (11), 4661–4667.

[4] Finkenstadt, V.L., and Tisserat, B., 2010, Ind. Crops Prod., 31, 316–320.

[5] Bledzki, A.K., and Gassan, J., 1999, Prog. Polym. Sci., 24 (2), 221–274.

[6] Kengkhetkit, N., and Amornsakchai, T., 2012, Ind. Crops Prod., 40, 55–61.

[7] Cherian, B.M, Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., and Kottaisamy, M., 2010, Carbohydr. Polym., 81 (3), 720–725.

[8] Kalia, S., Kaith, B.S., and Kaur, I., 2009, Polym. Eng. Sci., 49 (7), 1253–1272.

[9] Fortunati, E., Puglia, E., Monti, E., Santulli, C., Maniruzzamam, M., and Kenny, J.M., 2012, J. Appl. Polym. Sci., 128 (5), 3220–3230.

[10] Kvien, I., and Oksman, K., 2007, Appl. Phys. A, 87 (4), 641–643.

[11] Azeredo, H.M.C., Mattoso, L.H.C., Wood, D., Williams, T.G., Bustillos, R.J.A., and McHugh, T.H., 2009, J. Food Sci., 74 (5), N31–N35.

[12] Bondeson, D., and Oksman, K., 2007, Compos. Interfaces, 14 (7-9), 617–630.

[13] Roohani, M., Habibi, Y., Belgacem, Y.M., Ebrahim, G., Karimi, A.N., and Dufresne, A., 2008, Eur. Polym. J., 44 (8), 2489–2498.

[14] Cherian, B.M, Leão, A.L., de Souza, S.F., Costa, L.M.M., de Olyveira, G.M., Kottaisamy, M., Nagarajan, E.R., and Thomas, S., 2011, Carbohydr. Polym., 86 (4), 1790–1798.

[15] dos Santos, R.M., Neto, W.P.F., Silvério, H.A., Martins, D.F., Dantas, N.O., and Pasquini, D., 2013, Ind. Crops Prod., 50, 707–714.

[16] Tang, X., and Alavi, S., 2011, Carbohydr. Polym., 85 (1), 7–16.

[17] Ibrahim, M.M., El-Zawawy, W.K., and Nassar, M.A., 2010, Carbohydr. Polym., 79 (3), 694–699.

[18] Tang, C., and Liu, H., 2008, Composites Part A, 39 (10), 1638–1643.

[19] Savadekar, N.R., and Mhaske, S.T., 2012, Carbohydr. Polym., 89 (1), 146–151.

[20] Sánchez-Garcia, M.D., Hilliou, L., and Lagarón, J.M., 2010, J. Agric. Food Chem., 58 (24), 12847–12857.

[21] Pereda, M., Amica, G., Racz, I., and Marcovich, N.E., 2011, J. Food Eng., 103 (1), 76–83.

[22] Cuq, B., Gontard, N., Cuq, J.L., and Guilbert, S., 1997, In Galietta, G., Di Gioia, L., Guilbert, S., and Cuq, B., 1998, J. Dairy Sci., 81 (12), 3123–3130.

[23] Rachtanapun, P., and Tongdeesoontorn, W., 2009, As. J. Food Ag-Ind., 2 (04), 478–488.

[24] Costa, L.M.M., de Olyveira, G.M., Cherian, B.M., Leão, A.L., de Souza, S.F., and Ferreira, M., 2013, Ind. Crops Prod., 41, 198–202.

[25] Müller, C.M.O., Laurindo, J.B., and Yamashita, F., 2009, Food Hydrocolloids, 23 (5), 1328–1333.

[26] Larotonda, F.D.S., Matsui, K.N., Sobral, P.J.A., and Laurindo, J.B., 2005, J. Food Eng., 71 (4), 394–402.

[27] ASTM, 2003, Standard Practice for Temperature Calibration of Differential Scanning Calorimeters and Differential Thermal Analyzers, International ASTM: E 967.

[28] ASTM, 1993, Standard test method for water vapor transmission of materials, Designation ASTM: E 96-93, 701–708.

[29] Mahmoud, R., and Savello, P.A., 1992, J. Dairy Sci., 75 (4), 942–946.

[30] Guo, R., and Ding, E.Y., 2006, Chin. Chem. Lett., 17, 695–698.

[31] Sothornvit, R., and Krochta, J.M., 2001, J. Food Eng., 50 (3), 149–155.

[32] Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., and Hai, Y., 2011, Carbohydr. Polym., 83 (4), 1804–1811.

[33] Cacciotti, I., Fortunati, E., Puglia, D., Kenny, J.M., and Nanni, F., 2014, Carbohydr. Polym., 103, 22–31.

[34] Saxena, A., and Ragauskas, A.J., 2009, Carbohydr. Polym., 78 (2), 357–360.



DOI: https://doi.org/10.22146/ijc.21162

Article Metrics

Abstract views : 1043 | views : 3397


Copyright (c) 2016 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.