Molecular Dynamics Simulations and Empirical Observations on Soy Lecithin Liposome Preparation

https://doi.org/10.22146/ijc.21167

Rini Dwiastuti(1), Muhammad Radifar(2), Marchaban Marchaban(3*), Sri Noegrohati(4), Enade Perdana Istyastono(5)

(1) Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282 Pharmaceutical Sciences Doctoral Program, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(2) Graduate School, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281 Molecular Modeling Center “MOLMOD.ORG” Yogyakarta
(3) Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(4) Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282 Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(5) Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282 Molecular Modeling Center “MOLMOD.ORG” Yogyakarta
(*) Corresponding Author

Abstract


Soy lecithin is a phospholipid often used in liposome formulations. Determination of water and phospholipid composition is one of the problems in the liposome formulation. This study is using molecular dynamics simulation and empirical observation in producing liposome preparations. Phospholipids 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) were objected in molecular dynamics simulations using Coarse Grained Molecular Dynamics (CGMD) approaches. The result showed that the molecular dynamic simulations could be employed to predict the liposome size. The molecular dynamic simulations resulted in liposome size of 71.22 ± 2.54 nm, which was located within the range of the liposome size resulted from the empirical observations (95.99 ± 43.02 nm). Moreover, similar liposome forms were observed on both results of molecular dynamics simulations and empirical approaches.

Keywords


soy lecithin; liposome; 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE); Coarse Grained Molecular Dynamics (CGMD)

Full Text:

Full Text PDF


References

[1] Rahimpour, Y., and Hamishehkar, H., 2012, Expert Opin. Drug Delivery, 9 (4), 443–455.

[2] Maghraby, G.M.M.E, Williams, A.C., and Barry, B.W., 1999, J. Pharm. Pharmacol., 51 (10), 1123–1134.

[3] Maghraby, G.M.M.E., Williams, A.C., and Barry, B.W., 2001, J. Pharm. Pharmacol., 53 (6), 1069–1077.

[4] Wang, S., Zhang, J., Jiang, T., Zheng, L., Wang, Z., Zhang, J., and Yu, P., 2011, Int. J. Pharm., 403 (1-2), 219–229.

[5] Zhao, L., Wei, Y.M., Zhong, X.D., Liang, Y., Zhang, X.M., Li, W., Li, B.B., Wang, Y., and Yu, Y., 2009, J. Pharm. Biomed. Anal., 49 (4), 989–996.

[6] Liu, D., Hu, H., Lin, Z., Chen, D., Zhu, Y., Hou, S., and Shi, X., 2013, J. Photochem. Photobiol., B, 127, 8–17.

[7] Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., and Fessi, H., 2012, J. Colloid Sci. Biotechnol., 1 (2), 147–168.

[8] Eloy, J.O., de Souza, M.C., Petrilli, R., Barcellos, J.P.A., Lee, R.J., and Marchetti, J.M., 2014, Colloids Surf., B, 123, 345–363.

[9] Yokomizo, Y., and Sagitani, H., 1996, J. Controlled Release, 38 (2-3), 267–274.

[10] Risselada, H.J., and Marrink, S.J., 2009, Phys. Chem. Chem. Phys., 11 (2), 2056–2067.

[11] Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., and Nejati-Koshki, K., 2013, Nanoscale Res. Lett., 8, 1–9.

[12] Prates Ramalho, J.P., Gkeka, P., and Sarkisov, L., 2011, J. Surf. Colloids, 27 (7), 3723–3730.

[13] Pickholz, M., and Giupponi, G., 2010, J. Phys. Chem. B, 114 (20), 7009–7015.

[14] Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., and de Vries, A.H., 2007, J. Phys. Chem. B, 111 (27), 7812–7824.

[15] Humphrey, W., Dalke, A., and Schulten, K., 1996, J. Mol. Graphics, 14 (1), 33–38.

[16] Chng, C.P., and Yang, L.Y, 2008, Bioinf. Biol. Insights, 2, 171–185.

[17] Martínez, L., Andrade, R., Birgin, E.G., and Martínez, J.M., 2009, J. Comput. Chem., 30 (13), 2157–2164.

[18] Hudiyanti, D., Radifar, M., Raharjo, T.J., Narsito, N., and Noegrohati, S., 2014, J. Chem., 2014, 1–6.

[19] Istyastono, E.P., and Setyaningsih, D., 2015, Indones. J. Pharm., 26, 20–28.

[20] Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., and Schulten, K., 2005, J. Comput. Chem., 26 (16), 1781–1802.

[21] Hupfeld, S., Holsaeter, A.M., Skar, M., Frantzen, C.B., and Brandl, M., 2006, J. Nanosci. Nanotechnol., 6 (9-10), 3025–3031.

[22] Jahadi, M., Khosravi-Darani, K., Ehsani, M.R., Mozafari, M.R., Saboury, A.A., Seydahmadian, F., and Vafabakhsh, Z., 2012, Asian J. Chem., 24 (9), 3891–3894.

[23] Badran, M., Shalaby, K., and Al-Omrani, A., 2012, ScientificWorldJournal, 2012, 134876.



DOI: https://doi.org/10.22146/ijc.21167

Article Metrics

Abstract views : 5067 | views : 4356


Copyright (c) 2016 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.