A Rapid and Sensitive Diagnosis of Typhoid Fever Based On Nested PCR-Voltammetric DNA Biosensor Using Flagellin Gene Fragment

https://doi.org/10.22146/ijc.21182

Yeni Wahyuni Hartati(1*), Santhy Wyantuti(2), M. Lutfi Firdaus(3), Nurul Auliany(4), Rini Surbakti(5), Shabarni Gaffar(6)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang 45363, East Java
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang 45363, East Java
(3) Graduate School of Science Education, Bengkulu University, Jl. Raya Kandang Limun, Bengkulu 38371
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang 45363, East Java
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang 45363, East Java
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang 45363, East Java
(*) Corresponding Author

Abstract


Typhoid fever caused by Salmonella typhi is an important issue for public health in the world. Laboratory methods for rapid and sensitive diagnosis are very important for disease management. The purpose of this study was to determine the performance of nested PCR–voltammetric DNA biosensor using flagellin gene (fla) of S. typhi as a marker. The differential pulse voltammetry using pencil graphite electrode was applied to measure the guanine oxidation signal of probes vs synthetic target stDNA and probes vs fla PCR product hybridizations. The probe DNA selectivity was examined by hybridized probes vs non-complementary sequence. The result showed that the first round nested PCR product can not be visualized by agarose electrophoresis, whereas using the voltammetric biosensor methods can be detected both for the first or second round nested PCR product. The average peak current of hybridized probe vs first and second round of PCR product was 2.32 and 1.47 μA respectively, at 0.9 V. Detection of the DNA sequences of the infectious diseases from PCR amplified real sample was also carried out using this voltammetric DNA biosensor methods.

Keywords


Salmonella typhi; voltammetry; DNA biosensor; flagellin gene; PCR

Full Text:

Full Text PDF


References

[1] Saha, S.K., Ruhulamin, M., Hanif, M., Islam M.,, and Khan, W.A., 1996, Ann. Trop. Pediatr., 16, 75–78.

[2] Hatta, M., and Smits, H.L., 2007, Am. J. Trop. Med. Hyg., 76 (1), 139–143.

[3] Mousavi, L.S., Salimiyan, J., Rahgerdi, A.K., Amani, J., Nazarian, S., and Ardestani, H., 2006, Iran. J. Clin. Infect. Dis., 3, 113–119.

[4] Nath, G., Maurya, P., Gulati, A.K., Singh, T.B., Srivastava, R., Kumar, K., and Tripathi, S.K., 2010, Southeast Asian J. Trop. Med. Public Health, 41 (3), 636–640.

[5] Haque, A., Ahmed, J., and Quereshi, J., 1999, Ann. Saudi Med., 19 (4), 337–340.

[6] Wang, J., 2002, Anal. Chim. Acta., 469 (1), 63–71.

[7] Gao, H.W., Qin, P., Lin, C., Shang, Z.M., and Sun, W., 2010, J. Iran Chem. Soc., 7 (1), 119–127.

[8] Singh, A., Choudhary, M., Singh, M.P., Verma, H.N., Singh, S.P., and Arora, K., 2015, Bioelectrochemistry, 105, 7–15.

[9] Tabrizi, M.A., and Shamsipur, M., 2015, Biosens. Bioelectron., 69, 100–105.

[10] Ju, H., and Zhao. H., 2005, Front. Biosci., 10, 37–46.

[11] Erdem, A., Pividori, M.I., Lermo, A., Bonanni, A., de Valle, M., and Alegret, S., 2006, Sens. Actuators, B, 114 (2), 591–598.

[12] Das, R., Sharma, M.K., Rao, V.K., Bhattacharya, B.K., Garg, I., Venkatesh, V., and Upadhyay, S., 2014, J. Biotechnol., 188, 9–16.

[13] Singh, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha, R., Verma, H.N. Singh, S.P., and Arora, K., 2013, Sens. Actuators, B, 185, 675–684.

[14] Prakash, P., Mishra, O.P., Singh, A.K., Gulati, A.K., and Nath, G., 2005, J. Clin. Microbiol., 43 (1), 431–432.

[15] Chaudhry, R., Laxmi, B.V., Nisar, N., Ray, K., and Kumar, D., 1997, J. Clin. Pathol., 50 (5), 437–439.

[16] Chunglok, W., Wuragil, D.K., Oaew, S., Somasundrum, M., and Surareungchai, W., 2011, Biosens Bioelectron., 26, 3584–3589.

[17] Cohen, H.J., Mechanda, S.M., and Lin, W., 1996, Appl. Environ. Microbiol., 62 (12), 4303–4308.

[18] Dupray, E., Caprais, M.P., Derrien, A., and Fach, P., 1997, J. Appl. Microbiol., 82 (4), 507–510.

[19] Song, J.H., Cho, H., Park, M.Y., Na, D.S., Moon, H.B., and Pai, C.H., 1993, J. Clin. Microbiol., 31 (6), 1439–1443.

[20] Hartati, Y.W., Topkaya, S.N., Maksum, I.P., and Ozsoz, M., 2013, Adv. Anal. Chem., 3 (A), 20–27.

[21] Green, M.J., and Sambrook, J., 2012, Molecular Cloning, A Laboratory Manual, 4th Ed., Cold Spring Harbor, New York.



DOI: https://doi.org/10.22146/ijc.21182

Article Metrics

Abstract views : 3177 | views : 2892


Copyright (c) 2016 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.