Synthesis and Characterization of Chitosan/Phosphotungstic Acid-Montmorillonite Modified by Silane for DMFC Membrane

https://doi.org/10.22146/ijc.21188

Dian Permana(1), Muhammad Purwanto(2), La Ode Ahmad Nur Ramadhan(3), Lukman Atmaja(4*)

(1) Department of Chemistry, Sepuluh Nopember Institute of Technology (ITS), Jl. Arief Rahman Hakim,Sukolilo, Surabaya 60111
(2) Department of Chemistry, Sepuluh Nopember Institute of Technology (ITS), Jl. Arief Rahman Hakim,Sukolilo, Surabaya 60111
(3) Department of Chemistry, Halu Oleo University, Jl. Kampus Hijau Bumi Tridharma, Anduonou, Kendari 93132, Southeast Sulawesi
(4) Department of Chemistry, Sepuluh Nopember Institute of Technology (ITS), Jl. Arief Rahman Hakim, Sukolilo, Surabaya 60111
(*) Corresponding Author

Abstract


Montmorillonite was functionalized by (3-glycidyloxypropyl) trimethoxy silane (GPTMS). Subsequently, chitosan (CS) membranes filled by GPTMS-modified montmorillonite particles were prepared and characterized by FTIR. The result of FTIR obtained the peak wavenumber of 2940, 1471 and 1390 cm-1 referring to vibration stretching of CH2, bending of CH2 and CH3 form epoxy groups in silane, respectively which indicated modification of montmorillonite by silane. Compared with the pure CS and CS/PWA-MMT membrane, these CS/PWA-MMT/Silane hybrid membranes show apparently high proton conductivity and the lower methanol permeability, which could be assigned to the better interfacial morphology and compatibility between chitosan matrix and GPTMS-modified montmorillonite. In all the prepared CS/PWA-MMT/Silane hybrid membranes, the CS membrane filled by 10% GPTMS-modified montmorillonite particles exhibits the highest proton conductivity and the lowest methanol permeability, which is 19.15 x 10-3 S.cm-1 at 80 °C and 4.33 x 10-8 cm2.s-1, respectively. The results imply that CS/PWA-MMT silane 10% membrane has better interaction of interfacial morphology and compatibility between chitosan matrix and GPTMS-modified montmorillonite particles.

Keywords


chitosan; membrane; montmorillonite; proton conductivity; methanol permeability

Full Text:

Full Text Pdf


References

[1] Hasani-Sadrabadi, M.M., Dasthimoghadam, E., Mokarram, N., Majedi, F.S., and Jacob, K.I., 2012, Polymers, 53 (13), 2643–2651.

[2] Haghighi, A.M., Hasani-Sadrabadi, M.M., Dashtimoghadam, E., Bahlakeh, G., Shakeri, S.E., Majedi, F.S., Emami, S.H., and Moaddel, H., 2011, Int. J. Hydrogen Energy, 36 (5), 3688–3696.

[3] Kreuer, K.D., 2001, J. Membr. Sci., 185 (1), 29–39.

[4] Wang, Y., Yang, D., Zheng, X., Jiang, Z., and Li, J., 2008, J. Power Sources, 183 (2), 454–463.

[5] Su, Y-H., Liu, Y-L., Sun, Y-M., Lai, J-Y., Wang, D-M., Gao, Y., Liu, B., and Guiver, M.D., 2007, J. Membr. Sci., 296 (1-2), 21–28.

[6] Di Vona, M.L., Ahmed, Z., Bellitto, S., Lenci, A., Traversa, E., and Licoccia, S., 2007, J. Membr. Sci., 296 (1-2), 156–161.

[7] Silva, V.S., Ruffmann, B., Silva, H., Silva, V.B., Mendes, A., Madeira, L.M., and Nunes, S., 2006, J. Membr. Sci., 284 (1-2), 137–144.

[8] Aricò, A.S., Baglio, V., Di Blasi, V., Creti', P., Antonucci, P.L., and Antonucci, V., 2003, Solid State Ionics, 161 (3-4), 251–265.

[9] Rhee, C.H., Kim, H.K., Chang, H., and Lee, J.S., 2005, Chem. Mater., 17 (7), 1691–1697.

[10] Cui, Z., Liu, C., Lu, T., and Xing, W., 2007, J. Power Source, 167 (1), 94–99.

[11] Chen, Z., Holmberg, B., Li, W., Wang, X., Deng, W., Munoz, R., and Yan, Y., 2006, Chem. Mater., 18 (24), 5669–5675.

[12] Sancho, T., Soler, J., and Pina, M.P., 2007, J. Power Source, 169 (1), 92–97.

[13] Smitha, B., Sridhar, S., and Khan, A.A., 2005, J. Membr. Sci., 259 (1-2), 10–26.

[14] Smitha, B., Sridhar, S., and Khan, A.A., 2004, Macromolecules, 37 (6), 2233–2239.

[15] Wu, H., Zheng, B., Zheng, X., Wang, J., Yuan, W., and Jiang, Z., 2007, J. Power Sources, 173 (2), 842–852.

[16] Ramírez-Salgado, J. 2007, Electrochim. Acta, 52 (11), 3766–3778.

[17] Ramadhan, L.O.A.N., Radiman, C.L., Suendo, V., Wahyuningrum, D., and Valiyaveettil, S., 2012, Procedia Chem., 4, 114–122.

[18] Wan, Y., Peppley, B., Creber, K.A.M., and Tam Bui, V., 2010, J. Power Sources, 195 (12), 3785–3793.

[19] Salehi-Mobarakeh, H., Yadegari, A., Khakzad-Esfahlan, F., and Mahdavian, A., 2012, J. Appl. Polym. Sci., 124 (2), 1501–1510.

[20] Yang, C-C., Lee, Y-J., and Yang, J.N., 2009, J. Power Sources, 188 (1), 30–37.

[21] He, H., Tao, Q., Zhu, J., Yuan, P., Shen, W., and Yang, S., 2013, Appl. Clay Sci., 71, 15–20.

[22] Su, L., Tao, Q., He, H., Zhu, J., Yuan, P., and Zhu, R., 2013, J. Colloid Interface Sci., 391, 16–20.

[23] Tohidian, M., and Ghaffarian, S.R., 2013, J. Solid State Electrochem., 17 (8), 2123–2137.

[24] Wang, Y., Jiang, Z., Li, H., and Yang, D., 2010, Chem. Eng. Process. Process Intensif., 49 (3), 278–285.

[25] Ma, J., and Sahai, Y., 2013, Carbohydr. Polym., 92 (2), 955–975.

[26] Lin, H., Zhao, C., Ma, W., Shao, K., Li, H., Zhang, Y., and Na, H., 2010, J. Power Sources, 195 (3), 762–768.

[27] Peighambardoust, S.J., Rowshanzamir, S., and Amjadi, M., 2010, Int. J. Hydrogen Energy, 35 (17), 9349–9384.

[28] Tripathi, B.P., and Shahi, V.K., 2011, Prog. Polym. Sci., 36 (7), 945–979.

[29] Belkhiri, Z., Zeroual, M., Moussa, H., and Zitouni, B., 2011, Revue des Energies Renouvelables, 14 (1), 121–130.

[30] Li, T., and Yang, Y., 2009, J. Power Sources, 187 (2), 332–340.



DOI: https://doi.org/10.22146/ijc.21188

Article Metrics

Abstract views : 3041 | views : 2774


Copyright (c) 2015 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.