Influence of Solvothermal Temperatures and Times on Crystallinity and Morphology of MOF-5

Tri Ana Mulyati(1), Ratna Ediati(2*), Afifah Rosyidah(3)

(1) Department of Chemistry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo Surabaya 60111
(2) Department of Chemistry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo Surabaya 60111
(3) Department of Chemistry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo Surabaya 60111
(*) Corresponding Author


MOF-5 (metal-organic frameworks-5) have been synthesized using solvothermal method in which reaction mixtures of zinc nitrate hexahydrate and 1,4-benzenedicarboxylic acid (BDC) in dimethylformamide (DMF) were heated at various heating temperatures and times in order to observe the influence of heating temperature and time on crystallinity and morphology of the obtained MOF-5. The heating temperatures used were 105, 120 and 140 °C, respectively with heating times of 12–144 h. Determination of the best reaction conditionswas based on the observation of phase purity and crystal morphology of MOF-5 using XRD and SEM. The characterization results showed that MOF-5 crystals with a higher crystallinity were obtained when the reaction mixtures were heated at 105 °C for 144 h, 120 °C for 24 h or 140 °C for 12 h. The maximum weight of MOF-5 crystal was generated from reaction mixture heated at 120 °C for 72 h.


MOF-5; solvothermal; synthesis; crystallinity; morphology

Full Text:

Full Text Pdf


[1] Cheng, S., Liu, S., Zhao, Q., and Li, J., 2009, Energy Convers. Manage., 50(5), 1314–1317.

[2] Blanita, G., Ardelean, O., Lupu, D., Borodi, G., Coros, M., Vlassa, M., Misan, I., Coldea, I., Mihet, M., and Popeneciu, G., 2011, Rev. Roum. Chim., 56(6), 583–588.

[3] Sumida, K., and Arnold, J., 2011, J. Chem. Educ., 88, 92–94.

[4] Son, W.J., Kim, J., Kim, J., and Ahn, W.S., 2008, Chem. Commun., 47, 6336–6338.

[5] Li, J., Cheng, S., Zhao, Q., Long, P., and Dong, J., 2009, Int. J. Hydrogen Energy, 34(3), 1377–1382.

[6] Xiao, B., and Yuan, Q., 2009, Particuology, 7(2), 129–140.

[7] Biemmi, E., Christian, S., Stock, N., and Bein T., 2009, Microporous Mesoporous Mater., 117(1-2), 111–117.

[8] Lu, C.M., Liu, J., Xiao, K., and Harris, A.T., 2010, Chem. Eng. J., 156(2), 465–470.

[9] Phan, N.T.S., Le, K.A., and Phan, T.D., 2010, Appl. Catal. A, 382(2), 246–253.

[10] Zhao, Z., Ma, X., Li, Z., and Lin, Y.S., 2011, J. Membr. Sci., 382(1-2), 82–90.

[11] Orefuwa, S.A., Yang, H., and Goudy, A.J., 2012, Microporous Mesoporous Mater., 153, 88–93.

[12] Venna, S.R., Jasinski, J.B., and Carreon, M.A., 2010, J. Am. Chem. Soc., 132(51), 18030–18033.

[13] Choi, J.S., Son, W.J., Kim, J., and Ahn, W.S., 2008, Microporous Mesoporous Mater., 116(1-3), 727–731.

[14] Kida, K., Okita, M., Fujita, K., Tanaka, S., and Miyake, Y., 2013, CrystEngComm, 15(9), 1794–1801.

[15] Zhang, L., and Hu, Y.H., 2011, Phys. Lett. A, 375(13), 1514–1517.

[16] Zhang, L., and Hu, Y.H., 2011, Mater. Sci. Eng. B, 176(7), 573–578.

[17] Jiang, H.L., Liu, B., Lan, Y.Q., Kuratani, K., Akita, T., Shioyama, H., Zong, F., and Xu, Q., 2011, J. Am. Chem. Soc., 133(31), 11854–11857.

[18] Lee. J.Y., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T., and Hupp, J.T., 2009, Chem. Soc. Rev., 38(5), 1450–1459.

[19] Sabouni, R., Kazemian, H., and Rohani, S., 2010, Chem. Eng. J., 165(3), 966–973.

[20] Yang, S.J., Kim, T., Im, J.H., Kim, Y.S., Lee, K., Jung, H., and Park, C.R., 2012, Chem. Mater., 24(3), 464−470.

[21] Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., and Pastré, J., 2006, J. Mater. Chem., 16(7), 626–636.


Article Metrics

Abstract views : 1066 | views : 1831

Copyright (c) 2015 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.