Structure and Compatibility Study of Modified Polyurethane/Fe3O4 Nanocomposite for Shape Memory Materials

https://doi.org/10.22146/ijc.21206

Dick Ferieno Firdaus(1*), Masrudin Masrudin(2), Dessy Ayu Lestari(3), Mutya Rahmah Arbi(4), Mochamad Chalid(5)

(1) Department of Metallurgy and Materials Engineering, Universitas Indonesia, UI Depok New Campus, Depok 16424, West Java
(2) Department of Metallurgy and Materials Engineering, Universitas Indonesia, UI Depok New Campus, Depok 16424, West Java
(3) Department of Metallurgy and Materials Engineering, Universitas Indonesia, UI Depok New Campus, Depok 16424, West Java
(4) Department of Metallurgy and Materials Engineering, Universitas Indonesia, UI Depok New Campus, Depok 16424, West Java
(5) Department of Metallurgy and Materials Engineering, Universitas Indonesia, UI Depok New Campus, Depok 16424, West Java
(*) Corresponding Author

Abstract


Shape Memory Polymer (SMP) is one of smart materials class that has the ability to recall a given shape before deformation in the transient state. The development of SMP is dominated by polyurethane which is currently focused on the optimization of manufacturing-related research (ease of processing), and the extraction of the potential for biomedical applications. In this study, Shape Memory Polyurethane (SMPU) with Polyethylene Glycol-based material (PEG mw: 6000) as soft segment, 4,4'-Methylenebis (Cyclohexyl isocyanate) (HMDI) as a hard segment and 1,1,1-Trimethylol propane (TMP) as a chain extender were used as a candidate for Vascular Stents. Materials used for the fillers were nano particles of magnetite (Fe3O4) which have 20–50 nm diameters. Variations of the composition were used as a variable. Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) were conducted to investigate the polymer chains which were formed during polymerization, Field Emission Scanning Electron Microscopy (FE-SEM) was used to analyze the interface between the filler and the composite matrix. Manual physical actuation was conducted to analyze the physical recovery and transition temperature of the SMPU. Composition and fillers effect on the performance of SMPU composite were discussed in detail along with analysis of its structure and molecular design.

Keywords


HMDI; magnetite; PEG; SMPU; TMP

Full Text:

Full Text Pdf


References

[1] Lu, H., Liang, F., and Gou, J., 2011, Soft Matter, 7(16), 7416–7423.

[2] Viry, L., Mercader, C., Miaudet, P., Zakri, C., Derré, A., Kuhn, A., Maugey, M., and Poulin, P., 2010, J. Mater. Chem., 20(17), 3487–3495.

[3] Leng, J., Lv, H., Liu, Y., and Du, S., 2007, Appl. Phys. Lett., 91(14), 144105.

[4] Jung, Y.C., Yoo, H.J., Kim, Y.A., Cho, J.W., and Endo, M., 2010, Carbon, 48(5), 1598–1603.

[5] Sokolowski, W., Chmielewski, A., Hayashi, S., and Yamada, T., 1999, “Cold hibernated elastic memory (CHEM) self-deployable structures”, SPlE ’99 lnternational Symposium on Smart Structures and Materials, Newport Beach, CA.

[6] Ahmad, M., Xu, B., Purnawali, H., Fu, Y., Huang, W., Miraftab, M., and Luo, J., 2012, Appl. Sci., 2(2), 535–548.

[7] Schmidt, A.M., 2006, Macromol. Rapid Commun., 27(14), 1168–1172.

[8] Lu, H., Gou, J., Leng, J., and Du, S., 2011, Appl. Phys. Lett., 98, 174105.

[9] Yakacki, C.M., Satarkar, N.S., Gall, K., Likos, R., and Hilt, J.Z., 2009, J. Appl. Polym. Sci., 112(5), 3166–3176.

[10] Buckley, C.P., Prisacariu, C., and Caraculacu, A., 2007, Polymer, 48(5), 1388–1396.

[11] Lee, B.S., Chun, B.C., Chung, Y.C., Sul K.I., and Cho, J.W., 2001, Macromolecules, 34(18), 6431–6437.

[12] Cai, Y., Jiang, J-S., Zheng, B., and Xie, M-R., 2013, J. Appl. Polym. Sci., 127(1), 49–56.

[13] Kalita, H., and Karak, N., 2013, Polym. Adv. Technol., 24(9), 819–823.

[14] Jacoby, M., 2001, Chem. Eng. News, 79(6), 30–35.

[15] Mantovani, D., 2000, JOM-J. Min. Met. Mater. Soc., 52(10), 36–44.

[16] Deurig, T., Pelton, A., and Stöckel, D., 1999, Mater. Sci. Eng., A, (273-275), 149–160.

[17] Ölander, A., 1932, Z. Kristallogr., 83(1), 145–148.

[18] Sokolowski, W., CHEM Structure for Mars Exploration, Internal JPL Presentation, August 15, 1997.

[19] Hayashi, S., 1993, Proc. SPI Polyurethanes Div. 35th Annual Cong., Vancouver, B.C. Canada.

[20] Andelman, D., and Rosensweig, R.E., 2009, "The Phenomenology of Modulated Phases: From Magnetic Solids and Fluids to Organic Films and Polymers", in Polymers, liquids and colloids in electric fields: interfacial instabilities, orientation and phase transitions, Tsori, Y., and Steiner, U., eds., World Scientific, 1–56.

[21] Kunzelman, J., Cung, T., Mather, P.T., and Weder, C., 2008, J. Mater. Chem., 18(10), 1082–1086.

[22] Habib, A.H., Ondeck, C.L., Chaudhary, P., Bockstaller; M.R., and McHenry, M.E., 2008, J. Appl. Phys., 103, 07A307.

[23] Okawa, K., Sekine, M., Maeda, M., Tada, M., Abe, M., Matsushita, N., Nishio, K., and Handa, H., 2006, J. Appl. Phys., 99, 08H102.

[24] Hergt, R., Andra, W., d’Ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., and Schmidt, H., 1998, IEEE Trans. Magn., 34(5), 3745–3754.

[25] Bahadur, D., and Giri, J., 2003, SĀDHANĀ, 28(3-4), 639–656.

[26] O’Handley, C., 2000, Modern Magnetic Materials: Principles and Applications, Wiley, New York.

[27] Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J., 2003, J. Phys. D: Appl. Phys., 36(13), R167–R181.

[28] Chalid, M., Heeres, H.J., and Broekhuis, A.A., 2012, Appl. Mech. Mater., 229-231, 297–302.



DOI: https://doi.org/10.22146/ijc.21206

Article Metrics

Abstract views : 2127 | views : 2392


Copyright (c) 2015 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.