Antibacterial Compounds from Red Seaweeds (Rhodophyta)

https://doi.org/10.22146/ijc.21215

Noer Kasanah(1*), Triyanto Triyanto(2), Drajad Sarwo Seto(3), Windi Amelia(4), Alim Isnansetyo(5)

(1) Department of Fisheries and Marine Sciences, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(2) Department of Fisheries and Marine Sciences, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(3) Department of Fisheries and Marine Sciences, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(4) Department of Fisheries and Marine Sciences, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(5) Department of Fisheries and Marine Sciences, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(*) Corresponding Author

Abstract


Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta) are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported such as bromophycolides and neurymenolides. In summary, red seaweeds are potential sources for antibacterial agents and can serve as lead in synthesis of new natural medicines.

Keywords


red algae; bioactive compounds; antibacterial

Full Text:

Full Text Pdf


References

[1] Castro, P., and Huber, M.E., 2013, Marine Biology, McGraw-Hill, New York, 102–113.

[2] Lordan, S., Roos, P.R., and Stanton, C., 2011, Mar. Drugs, 9(6), 1056–1100.

[3] Holdt, S.L., and Kraan, S., 2011, J. Appl. Phycol., 23(3), 543–597.

[4] Dawczynski, C., Schäfer, U., Leiterer, M., and Jahreis, G., 2007, J. Agric. Food Chem., 55(25), 10470–10475.

[5] El Gamal, A.A., 2010, Saudi Pharm. J., 18(1), 1–25.

[6] Bhakuni, D.S., and Rawat, D.S., 2005, Bioactive Marine Natural Products, Anamaya Publisher, New Delhi, 1–10.

[7] Laurienzo, P., 2010, Mar. Drugs, 8(9), 2435–2465.

[8] Jiao, G., Yu, G., Zhang, J., and Ewart, H.S., 2011, Mar. Drugs, 9(2), 196–223.

[9] Pomin, V.H., and Maurão, P.A., 2008, Glycobiology, 18(12), 1016–1027.

[10] Ngo, D.H., and Kim, S.K., 2013, Int. J. Biol. Macromol., 62, 70–75.

[11] Lee, J-C., Hou, M-F., Huang, H-W., Chang, F-R., Yeh, C-C., Tang, J-Y., and Chang, H-W., Cancer Cell Int., 13, 1–7.

[12] Takaichi, S., 2011, Mar. Drugs, 9(6), 1101–1118.

[13] Güven, K.C., Percot, A., and Sezik, E., 2010, Mar. Drugs, 8(2), 269–284.

[14] Maschek, J.A., and Baker, B.J., 2008, “The Chemistry of Algal Secondary Metabolism” in Algal Chemical Ecology, Amsler, C.D., Springer-Verlag Berlin Heidelberg, Germany, 1–24.

[15] Kladi, M., Vagias, C., and Roussis, V., 2003, Phytochem. Rev., 3(3), 337–366.

[16] Cabrita, M.T., Vale, C., and Rauter, A.P., 2010, Mar. Drugs, 8(8), 2301–2317.

[17] Pedersén, M., Saenger, P., and Fries, L., 1974, Phytochemistry, 13(10), 2273–2279.

[18] Ayyad, S.E., Al-Footy, K.O., Alarif, W.M., Sobahi, T.R., Bassaif, S.A., Makki, M.S., Asiri, A.M., Al Halwani, A.Y., Badria, A.F., and Badria, F.A., 2011, Chem. Pharm. Bull., 59(10), 1294–1298.

[19] Spížek, J., Novotná, J., Rezanka, T., and Demain, A.L., 2010, J. Ind. Microbiol. Biotechnol., 37(12), 1241–1248.

[20] Smith, V.J., Desbois, A.P., and Dyrynda, E.A., 2010, Mar. Drugs, 8(4), 1213–1262.

[21] Kasanah, N., and Hamann, M.T., 2004, Curr. Opin. Invest. Drugs, 5(8), 827–837.

[22] Kijjoa, A., and Sawangwong, P., 2004, Mar. Drugs, 2(2), 73–82.

[23] Jha, R.K., and Zi-rong, X., 2004, Mar. Drugs, 2(3), 123–146.

[24] Sashidhara, K.V., White, K.N., and Crews, P.A., 2009, J. Nat. Prod., 72(3), 588–603.

[25] Newman, D.J., and Cragg, G.M., 2004, J. Nat. Prod., 67(8), 1216–1238.

[26] Capon, R.J., 2010, Aust. J. Chem., 63, 851–857.

[27] Kelman, D., Posner, E.K., McDermid, K.J., Tabandera, N.K., Wright, P.R., and Wright, A.D., 2012, Mar. Drugs, 10(2), 403–416.

[28] Boopathy, N.S., and Kathiresan, K., 2010, J. Oncol., 2010, 1–18.

[29] Liu, M., Hansen, P.E., and Lin, X., 2011, Mar. Drugs, 9(7), 1273–1292.

[30] Vo, T-S., and Kim, S-K., 2010, Mar. Drugs, 8(12), 2871–2892.

[31] Beutler, J.A., McKee, T.C., Fuller, R.W., Tischler, M., Cardellina II, J.H., Snader, K.M., McCloud, T.G., and Boyd, M.R., 1993, Antiviral Chem. Chemother., 4(3), 167–172.

[32] Jiménez, E., Dorta, F., Medina, C., Ramírez, A., Ramírez, I., and Peña-Cortés, H., 2011, Mar. Drugs, 9(5), 739–756.

[33] Bansemir, A., Blume, M., Schröder, S., and Lindequist, U., 2006, Aquaculture, 252(1), 79–84.

[34] Manilal, A., Sujith, S., Kiran, G.S., Selvin, J., Shakir, C., Gandhimathi, R., and Lipton, A.P., 2009, Ann. Microbiol., 59(2), 207–219.

[35] Lavanya, R., and Veerappan, N., 2011, Adv. Biol. Res., 5(1), 38-44.

[36] del Val, A.G., Platas, G., Basilio, A., Cabello, A., Gorrochategui, J., Suay, I., Vicente, F., Portillo, E., del Río M.G., Reina, G.G., and Peláez, F., 2001, Int. Microbiol., 4(1), 35–40.

[37] Seenivasan, R., Rekha. M., Indu, H., and Geetha, S., 2012, J. Appl. Pharm. Sci., 2(10), 159–169.

[38] Kolanjinathan, K., Ganesh, P., and Govindarajan, M., 2009, Eur. Rev. Med. Pharmacol. Sci., 13(3), 173–177.

[39] Kladi, M., Vagias, C., Stavri, M., M. Rahman, M.M., Gibbons, S., and Roussisa, V., 2008, Phytochem. Lett., 1(1), 31–36.

[40] Dos Santos A.O., Veiga-Santos P., Ueda-Nakamura, T., Filho, B.P., Sudatti, D.B., Bianco, E.M., Pereira, R.C., and Nakamura, C.V., 2010, Mar. Drugs, 8(11), 2733–2743.

[41] Ji, N-Y., Li, X-M., Li, K., and Wang, B-G., 2009, Helv. Chim. Acta, 92(9), 1873–1879.

[42] Suzuki, M., Daitoh, M., Vairappan, C.S., Abe, T., and Masuda, M., 2001, J. Nat. Prod., 64(5), 597–602.

[43] Vairappan, C.S., Ishii, T., Lee, T.K., Suzuki, M., and Zhaoqi, Z., 2010, Mar. Drugs, 8(6), 1743–1749.

[44] Wahidulla, S., D’Souza, L., and Govenker, M., 1998, Phytochemistry, 48(7), 1203–1206.

[45] Lang, K.L., Palermo, J.A., Falkenberg, M., and Schenkel, E.P., 2007, Biochem. Syst. Ecol., 35, 805–808.

[46] Prakash, O., Roy, R., and Bhakuni, D.S., 1989, J. Nat. Prod., 52(4), 686–692.

[47] Marinho-Sariano, E., 2001, J. Biotechnol., 89(1), 81–84.

[48] Francavilla, M., Franchi, M., Monteleone, M., and Caroppo, C., 2013, Mar. Drugs, 11(10), 3754–3776.

[49] Andriamanatoanina, H., Chambat, G., and Rinaudo, M., 2007, Carbohydr. Polym., 68, 77–88.

[50] Gerwick, W.H., and Bernart, M.W., 1993, Mar. Biotechnol., 101–149.

[51] de Almeida, C.L.F., Falcão, H.d.F., Lima, G.R.d.M., Montenegro, C.d.A., Lira, N.S., de Athayde-Filho, P.F., Rodrigues, L.C., de Souza, M.d.F.V., Barbosa-Filho, J.M., and Batista, L.M., 2011, Int. J. Mol. Sci., 12(7), 4550–4573.

[52] Manilal, A., Sugathan Sujith, S., Sabarathnam, B., Kiran, G.S., Selvin, J., Chippu Shakir, C., and Lipton, A.P., 2010, Braz. J. Oceanogr., 58(2), 93–100.

[53] Paul, N.A., de Nys, R., and Steinberg, P.D., 2006, Mar. Ecol. Prog. Ser., 306, 87–101.

[54] Lin, A.S., Stout, E.P., Prudhomme, J., Le Roch, K., Fairchild, C.R., Franzblau, S.G., Aalbersberg, W., Hay, M.E., and Kubanek, J., 2010, J. Nat. Prod., 73(2), 275–278.

[55] Kubanek, J., Prusak, A.C., Snell, T.W., Giese, R.A., Fairchild, C.R., Aalbersberg, W., and Hay, M.E., 2006, J. Nat. Prod., 69(5), 731–735.

[56] Kubanek, J., Prusak, A.C., Snell, T.W., Giese, R.A., Hardcastle, K.I., Fairchild, C.R., Aalbersberg, W., Raventos-Suarez, C., Hay, M.E., 2005, Org. Lett., 7(23), 5261-5264.

[57] Lane, A.L., Elizabeth P. Stout, E.P., Hay, M.E., Prusak, A.C., Hardcastle, K., Fairchild, C.R., Franzblau, S.G., Le Roch, K., Prudhomme, J., Aalbersberg, W., and Kubanek, J., 2007, J. Org. Chem., 72(19), 7343–7351.

[58] Lane, A.L., E. Stout, E.P., Lin, A-S., Prudhomme, J., Le Roch, K., Fairchild, C.R., Franzblau, S.G., Hay, M.E., Aalbersberg, W., and Kubanek, J., 2009, J. Org. Chem., 74(7), 2736–2742.

[59] Teasdale, M.E., Shearer, T.L., Engel, S., Alexander, T.S., Fairchild, C.R., Prudhomme, J., Torres, M., Le Roch, K., Aalbersberg, W., Hay, M.E., and Kubanek, J., 2012, J. Org. Chem., 77(18), 8000–8006.

[60] Stout, E.P., Hasemeyer, A.P., Lane, A.L., Davenport, T.M., Engel, S., Hay, M.E., Fairchild, C.R., Prudhomme, J., Le Roch, K., Aalbersberg, W., and Kubanek, J., Org. Lett., 2009, 11(1),
225–228.

[61] Ma, M., Zhao, J., Wang, S., Li, S., Yang, Y., Shi, J., Fan, X., and He, L., 2006, J. Nat. Prod., 69(2), 206–210.

[62] Ma, M., Zhao, J., Wang, S., Li, S., Yang, Y., Shi, J., Fan, X., and He, L., 2007, J. Nat. Prod., 70(3), 337–341.

[63] Xu, N., Fan, X., Yan, X., Li, X., Niu, R., and Tseng, C.K., 2003, Phytochemistry, 62(8), 1221–1224.



DOI: https://doi.org/10.22146/ijc.21215

Article Metrics

Abstract views : 9425 | views : 6799


Copyright (c) 2015 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.