Production of Reducing Sugar from Cassava Solid Waste by Simultaneous Ultrasonication and Acid Hydrolysis

https://doi.org/10.22146/ijc.21233

Wasinton Simanjuntak(1*), Heri Satria(2), Nurul Utami(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
(*) Corresponding Author

Abstract


In this study, acid hydrolysis of cassava solid waste under ultrasound irradiation for reducing sugar production was studied. A series of experiments was carried out under a 40 kHz ultrasound irradiation, with the main purpose to examine the effect of pHs, hydrolysis times, and temperatures on the concentration of reducing sugar produced. As a control an untreated sample was subjected to thermal hydrolysis under the optimum condition obtained from the hydrolysis experiments under ultrasound treatment. The results obtained indicated that the highest reducing sugar concentration was obtained from the experiment undertaken at pH = 2.0; hydrolysis time of 90 min, and temperature of 80 °C. Experiment conducted at this optimum condition was found to produce reducing sugar with the concentration of 801 mg/L. This concentration around 11 times over that produced from control sample, demonstrating that simultaneous ultrasonication and hydrolysis is far more effective than conventional thermal hydrolysis. This hydrolysis improvement is attributed to the ultrasound stimulated degradation of starch molecules, leading to accelerated hydrolysis due to the cavitations of the molecules, as evidently shown by the result of SEM characterization of the original and ultrasonicated sample.

Keywords


cassava solid waste; ultrasound; reducing sugar

Full Text:

Full Text Pdf


References

[1] Chandel, A., Chan, E., Rudravaram, R., Narasu, L., Rao, V., and.Ravindra, P., 2007, Biotechnol. Mol. Biol. Rev., 2 (1), 014–032.

[2] Balat, M., and Balat, H., 2009, Appl. Energy, 86 (1), 2273–2282.

[3] Encinar, J.M., González, J.F., Rodriguez, J.J., and Tejedor, A., 2002, Energy Fuels, 16 (2), 443–450.

[4] Rekso, G.T., 2014, Indo. J. Chem., 14 (1), 37–42.

[5] Hermiati, E., Azuma, J.-I., Mangunwijaya, Dj., Sunarti, T.C., Suparno, O., and Prasetya, B., 2011, Indo. J. Chem., 11 (3), 238–245.

[6] Sriroth, K., Chollakup, R., Chotineeranat, S., Piyachomkwan, K., and Oates, C.G., 2000, Bioresour. Technol., 71 (1), 63–70.

[7] Jyothi, A.N., Sasikiran, K., Nambisan, B., and Balagopalan, C., 2005, Process Biochem., 40 (11), 3576–3579.

[8] Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D., and Mohan, R., 2000, Biotechnol. Appl. Biochem., 31 (Pt 2), 135–152.

[9] Yamada, S., Shinomiya, N., Ohba, K., Sekikawa, M., and Oda, Y., 2009, Food Sci. Technol. Res., 15 (6), 653–658.

[10] Joginder, S.D., Ashok, K., and Sunil. K.T., 2013, Afr. J. Microbiol. Res., 7 (46), 5253–52560.

[11] Barnali, B., Basu, R.K., and Ash, S.N., 2008, J. Sci. Ind. Res., 67, 295–298.

[12] Spets, J.-P., Kuosa, M., Granström, T., Kiros, Y., Rantanen, J., Lampinen, M.J., and Saari, K., 2010, Mater. Sci. Forum, 638-642, 1164–1169.

[13] Subashini, D., Ejilane, J., Radha, A., Jayasri, M.A., and Suthindhiran, K., 2011, Curr. Res. J. Biol. Sci., 3 (1), 42–51.

[14] Sovorawet, B., and Kongkiattikajorn, J., 2012, KKU Res. J., 17 (4), 565–572.

[15] Corredor, D.Y., Bean, S., and Wang, D., 2007, Cereal Chem., 84 (1), 61–66.

[16] Adrados, P., Beatri, Z., Mats, G., and Guido, Z., 2004, Appl. Biochem. Biotechnol., 115, (1-3), 989–1002.

[17] Palav, T., and Seetharaman, K., 2007, Carbohydr. Polym., 67 (4), 596–604.

[18] Nitayavardhana, S., Rakshit, S.K., Grewell, D., van Leeuwen, J.H., and Khanal, S.K., 2008, Biotechnol. Bioeng., 101 (3), 487–496.

[19] Sun, R.C., and Tomkinson, J., 2002, Ultrason. Sonochem., 9 (2), 85–93.

[20] Pappas, C., Tarantilis, P.A., Daliani, I., Mavromoustakos, T., and Polissiou, M., 2002, Ultrason. Sonochem., 9 (1), 19–23.

[21] Imai, M., Ikari, K., and Suzuki, I., 2004, Biochem. Eng. J., 17 (2), 79–83.

[22] Zhang, Q., Benoit, M., Vigier, K.De.O., Barrault, J., Jégou, G., Philippe, M., and Jérôme, F., 2013, Green Chem., 15 (4), 963–969.

[23] Madeleine, J., Bussemaker, M.J., and Zhang, D., 2013, Ind. Eng. Chem. Res., 52 (10), 3563–3580.

[24] Subhedar, P.B., and Gogate, P.R., 2013, Ind. Eng. Chem. Res., 52 (34), 11816–11828.

[25] Qian, J., Chen, X., Ying, X., and Binfeng, L. 2011, Int. J. Food Sci. Technol., 46 (1), 79–185.

[26] Shewale, S.D., and Pandit, A. B., 2009, Carbohydr. Res., 344 (1), 52–60.

[27] Miller, G.L., 1959, Anal. Chem., 31 (3), 426–428.

[28] Huang, Q., Li, L., and Fu, X., 2007, Starch-Stärke, 59 (8), 371–378.

[29] Kolusheva, T., and Marinova, A, 2007, J. Univ. Chem. Technol. Metall., 42 (1), 93–96.

[30] Nikolić, S., Mojović, L., Rakin, M., Pejin, D., and Pejin, J., 2010, Food Chem., 122 (1), 216–222.

[31] Zamora, L.L., Calderón, J.A.C., Vázquez, E.T., and Reynoso, E.B., 2010, J. Mex. Chem. Soc., 54 (4), 198–203.



DOI: https://doi.org/10.22146/ijc.21233

Article Metrics

Abstract views : 511 | views : 1088


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.