Fast Swelling Superabsorbent Hydrogels Starch Based Prepared by Gamma Radiation Techniques

https://doi.org/10.22146/ijc.21235

Erizal Erizal(1*), Dian Pribadi Perkasa(2), Basril Abbas(3), Sudirman Sudirman(4), Sulistioso G.S.(5)

(1) Centre for the Application Isotopes and Radiation, National Nuclear Energy Agency, Jakarta 12070
(2) Centre for the Application Isotopes and Radiation, National Nuclear Energy Agency, Jakarta 12070
(3) Centre for the Application Isotopes and Radiation, National Nuclear Energy Agency, Jakarta 12070
(4) Centre for Science and Technology of Advanced Material, National Nuclear Energy Agency, Serpong 15314, Tangerang
(5) Centre for Science and Technology of Advanced Material, National Nuclear Energy Agency, Serpong 15314, Tangerang
(*) Corresponding Author

Abstract


Fast swelling hydrogels were synthesized from the mixture of acrylamide (AAM)-acrylic acid (AA)-starch (15:5:1 w/v) solution by radiation crosslinking with varying irradiation doses (7.5-12.5 kGy) at room temperature. The copolymers were characterizated by Fourier transform infra red spectroscopy (FTIR) and Differential scanning calorimetry (DSC). It was found that hydrogels showed superabsorbent properties with higher swelling capacities (~400 g/g) and reached at a very short time (3 min). There was no significance difference between the effect irradiation dose on swelling of hydrogels. The hydrogels were also found to sensitive to the ionic strength of medium. The FTIR spectra and thermogram DSC of hydrogels were confirmed the crosslinking occurs in the hydrogels.

Keywords


radiation; superabsorbent; acrylamide; acrylic acid; starch

Full Text:

Full Text Pdf


References

[1] Bucholz, F.L., Graham, T., 1998, Modern Superabsorbent Polymer Technology, Wiley VCH, New York, p.151.

[2] Abd El-Rehim, H.A., Hegazy, E.S.A, and Abd El-Mohdy, H.L., 2004, J. Appl. Polym. Sci., 93 (3), 1360–1371.

[3] Bakass, M., Mokhlisse, A., and Lallemant, M., 2002, J. Appl. Polym. Sci., 83 (2), 234–243.

[4] Chang, C., Duan, B., Cai, J., and Zhang, L., 2010, Eur. Polym. J., 46 (1), 92–100.

[5] Flores, J.G., Herraiz, M., and Ruiz del Castillo, M.L., 2006, J. Sep. Sci., 2006, 29 (17) 2677–2683.

[6] Tomar, R.S., Gupta, I., Singhai, R., and Nagpal, A.K., 2007, Des. Monomers Polym., 10 (1), 49–66.

[7] Erizal, 2010, Sci. J. Appl. Isot. Radiat., 6 (2), 105–116.

[8] Şolpan, D., Duran, S., Saraydin, D., and Guven, O., 2003, Radiat. Phys. Chem., 66 (2), 117–127.

[9] Kurita, K., 2001, Prog. Polym. Sci., 26 (9), 1921–1971.

[10] Erizal, 2012, Indo. J. Chem., 12 (2), 113–118.

[11] Charlesby, A., Atomic Radiation and Polymers, 1960, Pergamon Press, Oxford.

[12] Defader, N.C., Ganguli, S., Sattar, M.A., Haque, M.E., and Akhtar, F., 2009, Malaysian Polym. J., 4 (2), 37–45.

[13] Khoylou, F., and Naimian, F., 2009, Radiat. Phys. Chem., 78 (3), 195–198.

[14] Francis, S., Kumar, M., and Varshney, L., 2004, Radiat. Phys. Chem., 69 (6), 481–486.

[15] Elvira, C., Mano, J.F., Román, J.S., and Reis, R.L., 2002, Biomaterials, 23 (9), 1955–1966.

[16] Fang, J.M., Fowler, P.A., Tomkinson, J., and Hill, C.A.S., 2002, Carbohydr. Polym., 47 (3), 245–252.

[17] Colette, F.Q., 2011, Water LLC, TA Instrument, 1–11.

[18] Krueger, B.R., Walker, C.E., Knutson, C.A., and Inglett, G.E., 1987, Cereal Chem., 64 (3), 187–190.



DOI: https://doi.org/10.22146/ijc.21235

Article Metrics

Abstract views : 702 | views : 2125


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.