Quality and Chemical Composition of Organic and Non-Organic Vetiver Oil

https://doi.org/10.22146/ijc.21266

Asep Kadarohman(1), Ratnaningsih Eko S.(2), Gebi Dwiyanti(3), Lela Lailatul K.(4*), Ede Kadarusman(5), Ahmad Nur F.(6)

(1) Department of Chemistry Education, Faculty of Mathematics and Sciences Education, Indonesia University of Education, Bandung, Jl. Dr. Setiabudhi No. 229 Bandung 40154 West Java
(2) Department of Chemistry Education, Faculty of Mathematics and Sciences Education, Indonesia University of Education, Bandung, Jl. Dr. Setiabudhi No. 229 Bandung 40154 West Java
(3) Department of Chemistry Education, Faculty of Mathematics and Sciences Education, Indonesia University of Education, Bandung, Jl. Dr. Setiabudhi No. 229 Bandung 40154 West Java
(4) Department of Chemistry Education, Faculty of Mathematics and Sciences Education, Indonesia University of Education, Bandung, Jl. Dr. Setiabudhi No. 229 Bandung 40154 West Java
(5) UKM of Vetiver Oil in Samarang Garut, Jl. Raya Kamojang Samarang Garut 44161 West Java
(6) UKM of Vetiver Oil in Samarang Garut, Jl. Raya Kamojang Samarang Garut 44161 West Java
(*) Corresponding Author

Abstract


Vetiver oil (Vetiveria zizanoides) has been used as perfume materials, cosmetics, fragrance soaps, anti-inflammation, repellent, and insecticidal agents. Organic vetiver oil has higher economical value than non-organic vetiver oil and it has been regarded to be able to compete in the global market. Therefore, studies have been carried out using 1 hectare of land and the first generation of organic vetiver oil has produced 0.57% of yield, greater than non-organic (0.50%). The quality of organic and non-organic vetiver oil was analyzed by Indonesian Standard (SNI) parameter, pesticide residue test, chemical composition by GC/MS, and the appearance of vetiver root. In general, the result of organic and non-organic vetiver oil has fulfilled the national standard; the quality of organic vetiver oil was better than non-organic one. Physically, the appearance of organic vetiver root was better than non-organic vetiver root; organic vetiver root was denser, more appealing, and did not have any black spots. The pesticide residue of organic vetiver oil was lower than non-organic vetiver oil. Based on SNI test, vetiverol (oxygen compounds) in organic vetiver oil was higher than non-organic vetiver oil.

Keywords


Vetiveria zizanoides; organic vetiver oil; vetiverol

Full Text:

Full Text PDF


References

[1] Bassolé, I.H.N., and Juliani, H.R., 2012, Molecules, 17 (4), 3989–4006.

[2] Joy, P.P., Thomas, J., Mathew, S., Jose, G., and Joseph, J., 2001, Tropical Holticulture, 2 (ed. Bose, T.K., Kabir, J., Das, P., and Joy, P.P.), 633–733.

[3] Sievers, A.F., 1928, Tech. Bull., 16, 6–16.

[4] Lawrence, B.M., “The Isolation of Aromatic Materials from Natural Plant Products” in A Manual on the Essential Oil Industry, ed. Silva, K.T.D., UNIDO, Vienna, 1995, 57–154.

[5] Dewick, P.M., 2002, Medicinal Natural Products: A Biosynthetic Approach, 2nd ed., John Wiley&Sons Ltd, Baffins Lane, Chichester, 172–185.

[6] Chomchalow, N., 2001, Tech. Bull., 1, 7–9.

[7] Bauer, K., Garbe, D., and Surburg, H., 2001, Common Fragrance and Flavor Materials: Preparation, Properties, and Uses, 2nd ed., Wiley-VCH, Weinheim, 168–170.

[8] Henderson, G., Heumann, D.O., Laine, R.A., Maistrello, L., Zhu, B.C., and Chen, F., 2005, United States Patent 6906108, B2. 1–13, 12 claims, 4 drawing sheets.

[9] Jain, S.C., Nowicki, S., Eisner, T., and Meinwald, J., 1982, Tetrahedron Lett., 23 (45), 4639–4642.

[10] Maistrello, L., Henderson, G., and Laine, R.A., 2001, J. Econ. Entomol., 94 (6), 1532–1537.

[11] Raja, M., and William, S.J., 2008, Int. J. Integr. Biol., 2 (1), 62–64.

[12] Tarigan, N., 2006, Buletin Teknik Pertanian, 11 (1), 1–4.

[13] Zhu, B.C.R., Henderson, G., Chen, F., Fei, H., and Laine, R.A., 2004, J. Chem. Ecol., 27 (8), 1617–1625.

[14] Zhu, B.C.R., Henderson, G., Adams, R.P., Mao, L., Yu, Y., and Laine, R.A., 2003, J. Sociobiology, 42 (3), 623–637.

[15] Aarthi, N., and Murugan, K., 2010, J. Biopest., 3 (1 Special Issue), 199–204.

[16] Pripdeevech, P., Wongpornchai, S., and Promsiri, A., 2006, Molecules, 11 (10), 817–826.

[17] Koul, O., Walia, S., and Dhaliwal, G.S., 2008, J. Biopestic. Int., 4 (1), 63–84.

[18] Kadarohman, A., Sardjono, R.E., Dwiyanti, G., Khumaisah, L.L., Kadarusman, E., and Fathorudin, A.N., 2012, AGRIVITA J. Agric. Sci., 34 (1), 60–66.

[19] Sell, C., 2006, The Chemistry of Fragrances: From Perfumer to Consumer, 2nd ed, The Royal Society of Chemistry, Cambridge, 24–51.

[20] Shibamoto, T., 1984, “Applications of high-resolution capillary columns on flavor and fragrance analysis, in Analysis of Volatiles: Methods-Applications, P. Schreirer (ed.), Walter de Gruyter, New York, 233–251.

[21] Douglas, M., Heyes, J., and Smallfield, B., 2005, Herbs, Spices, and Essential Oils, Vienna, Rome, Austria and Italy: UNIDO and FAO.

[22] Mussinan, C.J., 1993, “Instrumental analysis in the flavor industry”, in Flavor Science: Sensible Principles and Techniques, T.E. Acree and R. Teranishi (ed.), American Chemical Society, Washington DC, 169–225.

[23] Takeoka, G., Ebeler, S., and Jennings, W., 1985, “Capillary gas chromatographic analysis of volatile flavor compounds”, in Characterization and Measurement of Flavor Compounds, D.D. Bills, and C.J. Mussinan (ed.), American Chemical Society, Washington DC, 95–109.

[24] Busch, K.L., and Kroha, K.J., 1985, “Tandem mass spectrometry applied to the characterization of flavor compounds”, in Characterization and Measurement of Flavor Compounds, D.D. Bills, and C.J. Mussinan (ed.), American Chemical Society, Washington DC, 121–138.

[25] Gilbert, J., 1987, “Applications of Mass Spectrometry” in Food Science, Elsevier Applied Science, New York, 41–43.

[26] Soković, M.D., Vukojević, J., Marin, P.D., Brkić, D.D., Vajs, V., and Griensven, L.J.L.D., 2009, Molecules, 14 (1), 238–249.

[27] Soković, M., Marin, P.D., Brkić, D., and Griensven L.J.L.D, 2007, Food (Global Science Books), 1 (1), 1–7.

[28] Tonzibo, Z.F., Florence, A.B., Bedi, G., and Chalchat, J.C., 2009, Eur. J. Sci. Res., 38 (4), 566–571.

[29] Amhamdi, H., Aouinti, F., Wathelet, J.P., and Elbachiri, A., 2009, Rec. Nat. Prod., 3 (2), 90–95.

[30] Chamorro, E.R., Ballerini, G., Sequeira, A.F., Velasco, G.A., and Zalazar, M.F., 2008, J. Argent. Chem. Soc., 96 (1-2), 80–86.

[31] Bajpai, V.K., Rahman, A., and Kang, S.C., 2008, Int. J. Food Microbiol., 125 (2), 117–122.

[32] Bhuiyan, Md.N.I., Begum, J., and Sultana, M., 2009, Bangladesh J. Pharmacol., 4 (2), 150–153.

[33] Moghtader, M., 2009, Am.-Eurasian J. Agric. Environ. Sci., 5 (6), 843–846.

[34] Noudogbessi, J.P., Yedomonhan, P., Sohounhloue, D.C.K., Chalchat, J.C., and Figueredo, G., 2009, Rec. Nat. Prod., 2 (2), 33–38.

[35] Afoulous, S., Ferhout, H., Raoelison, E.G., Valentin, A., Moukarzel, B., Couderc, F., and Bouajila, J., 2011, Molecules, 16 (10), 8273–8291.

[36] Sonibare, O.O., and Olakunle, K., 2008, Afr. J. Biotechnol., 7 (14), 2462–2464.

[37] Marzoug, H.N.B., Romdhane, M., Lebrihi, A., Mathieu, F., Couderc, F., Abderraba, M., Khouja, M.L., and Bouajila, J., 2011, Molecules, 16 (2), 1695–1709.

[38] Koba, K., Poutouli, P.W., Raynaud, C., Chaumont, J.P., and Sanda, K., 2009, Bangladesh J. Pharmacol, 4, 1–8.

[39] Noudogbessi, J.P., Natta, A.K., Avlessi, F., Sohounhloue, D.C.K., Figueredo, G., and Chalchat, J.C., 2011, Aust. J. Basic Appl. Sci., 5 (2), 34–40.

[40] Derwich, E., Benziane, Z., and Boukir, A., 2010, Electron. J. Environ. Agric. Food. Chem., 9 (1), 19–28.



DOI: https://doi.org/10.22146/ijc.21266

Article Metrics

Abstract views : 2807 | views : 3087


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.