Grafting of Chloroacetic Acid on EGDE Cross-Linked Chitosan to Enhance Stability and Adsorption Capacity For Pb(II) Ions

https://doi.org/10.22146/ijc.21269

Abu Masykur(1*), Sri Juari Santosa(2), Dwi Siswanta(3), Jumina Jumina(4)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36A Surakarta 57126
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Kotak Pos BLS 21, Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Kotak Pos BLS 21, Yogyakarta 55281
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Kotak Pos BLS 21, Yogyakarta 55281
(*) Corresponding Author

Abstract


The aims of this research is to synthesize a chitosan derivative insoluble in acidic aqueous medium and that has high adsorption capacity for Pb(II) ions by cross-linking and grafting. Cross-linking and grafting were done using ethylene glycol diglycidyl ether (EGDE) and chloroacetic acid, respectively. The modified chitosan was characterized using FTIR spectrophotometer, XRD and TG-DTA. Chitosan and Chit-EGDE-Acetate was applied as adsorbent of Pb(II) ions in a batch system. The concentration of Pb(II) in adsorption medium was quantified using AAS. The result showed that the adsorption was optimum at pH 5, contact time of 200 min for chitosan and 300 min for Chit-EGDE-Acetate. Adsorption of Pb(II) ions on both adsorbents followed pseudo second order kinetic equation. Adsorption of Pb(II) ions on chitosan followed Freundlich isotherm while that on Chit-EGDE-Acetate followed the Langmuir adsorption isotherm. The adsorption capacity of Chit-EGDE-Acetate for Pb(II) ions was 200.0 mg L-1 while that for chitosan was 166.7 mg L-1. Interaction type of Pb(II) ions on adsorbent was determined by sequential desorption.

Keywords


chitosan; EGDE; chloroacetic acid; adsorption; Pb(II)

Full Text:

Full Text PDF


References

[1] Ghaee, A., Shariaty-Niassar, M., Barzin, J., and Zarghan, A., 2012, Appl. Surf. Sci., 258 (19), 7732–7743.

[2] Yan, H., Dai, J., Yang, Z., Yang, H. and Cheng, R., 2011, Chem. Eng. J., 174 (2-3), 586–594.

[3] Sölener, M., Tunali, S., Özcan A.S., Özcan, A., and Gedikbey, T., 2008, Desalination, 223 (1-3), 308–322.

[4] Guibal, E., 2004, Sep. Purif. Technol., 38 (1), 43–74.

[5] Copello, G.J., Varela, F., Vivot, M., and Diaz, L.E., 2008, Bioresour. Technol., 99 (14), 6538–6544.

[6] Miretzky, P., and Cirelli, A.F., 2009, J. Hazard. Mater., 167 (1-3), 10–23.

[7] Liu, B., Wang, D., Xu, Y., and Huang, H., 2011, J. Mater. Sci., 46 (5), 1535–1541.

[8] Chen, A., Liu, S.C., Chen, C.Y., and Chen, C.Y., 2008, J. Hazard. Mater., 154 (1-3), 184–191.

[9] Dalida, P.M.L., Mariano, A.F.V., Futalan, C.M., Kan, C., Tsai W., and Wan, M., 2011, Desalination, 275 (1-3), 154–159.

[10] Vieira, R.S., and Beppu, M.M., 2005, Adsorption, 11, 731–736.

[11] Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., and Ueda, K., 2008, Bioresour. Technol., 99, 3801–3809.

[12] Zhang, Q., Deng, S., Yu, G., and Huang, J., 2011, Bioresour. Technol., 102 (3), 2265–2271.

[13] Suguna, M., Kumar, S.S., Reddy, A.S., Boddu, V.M., and Krishnaiah, A., 2011, Can. J. Chem. Eng., 89 (4), 833–843.

[14] Santoso, U.T., Umaningrum, D., Irawati, U., and Nurmasari, R., 2008, Indo. J. Chem., 8 (2), 177–183.

[15] Oshita, K., Seo, K., Sabarudin, A., Oshima, M., Takayanagi, T., and Motomizu, S., 2008, Anal. Bioanal. Chem., 390, 1927–1932.

[16] Katarina, R.S., Takayanagi, T., Oshita, K., Oshima, M., and Motomizu, S., 2008, Anal. Sci., 24 (12), 1537–1544.

[17] Sabarudin, A., Noguchi, O., Oshima, M., Higuchi, K., and Motomizu, S., 2007, Microchim. Acta, 159 (3-4), 341–348.

[18] Kocak, N., Sahin, M., Arslan, G., and Ucan, H.I., 2012, J. Inorg. Organomet. Polym., 22 (1), 166–177.

[19] Grisdanurak, N., Akewaranugulsiri, S., Futalan, C.M., Tsai, W., Kan C.C., Kan, C.C., Hsu, C.W., and Wan, M.W., 2012, J. Appl. Polym. Sci., 125 (S2), 132–142.

[20] Tirtom, V.N., Dincer, A., Becerik, S., Aydemir, T., and Celik A., 2012, Chem. Eng. J., 197, 379–386.

[21] Wang, L., Li, Q., and Wang, A., 2010, Polym. Bull., 65 (9), 961–975.

[22] Farag, S., and Kareem, S.S.A., 2009, Carbohydr. Polym., 78 (2), 263–267.

[23] Abreu, F.R., and Campana-Filho, S.P., 2005, Polímeros, 15 (2), 79–83.

[24] Buhani, Suharso, and Sumadi, 2010, Desalination, 259 (1-3), 140–146.

[25] Li, N., and Bai, R., 2005, Ind. Eng. Chem. Res., 44 (17), 6692–6700.

[26] Dong, Y., Xu, C., Wang, J., Wang, M., Wu, Y., and Ruan, Y., 2001, Sci. Chin. Chem., 2 (44), 216–224.

[27] Van de Velde, K., and Kiekens P., 2004, Carbohydr. Polym., 58 (4), 409–416.

[28] Zhang, Y., Xue, Y., Gao, R., and Zhang, X., 2005, Carbohydr. Res., 340 (11), 1914–1917.

[29] Jiao, T.F., Zhou, J., Zhou, J.X., Gao, L.H., Xing, Y.Y., and Li, X.H., 2011, Iran. Polym. J., 20 (2), 123–136.

[30] Santoso, U.T., Nurmasari, R., Umaningrum, D., Santosa, S.J., Rusdiarso, B., and Siswanta, D., 2012, Indo. J. Chem., 12 (1), 35–42.

[31] Zhang, J., Zhang, Y., Li, R., and Pan, Q., 2012, Indian J. Chem. Technol., 19 (3), 161–166.

[32] Ho, Y.S., and McKay, G., 1999, Process. Biochem., 34 (5), 451–465.

[33] Erosa, M.S.D., Medina T.I.S., Mendoza, R.N., Rodriguez, M.A., and Guibal, E., 2001, Hydrometallurgy, 61 (3), 157–167.

[34] Ozkarahman, B., Bai, A., Acar, I., and Guchu, G., 2011, Clean-Soil, Air, Water, 39 (11), 1001–1006.



DOI: https://doi.org/10.22146/ijc.21269

Article Metrics

Abstract views : 2344 | views : 1961


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.