ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE

https://doi.org/10.22146/ijc.21424

Riyanto Riyanto(1*), Mohamed Rozali Othman(2), Jumat Salimon(3)

(1) Chemistry Study Program, Faculty of Mathematics and Natural Science, Universitas Islam Indonesia, Jl. Kaliurang KM 14.5 Yogyakarta 55584
(2) Electrosynthesis Laboratory (Room B105), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan
(3) Electrosynthesis Laboratory (Room B105), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan
(*) Corresponding Author

Abstract


The morphological characteristics and electrochemical behavior of nickel metal foil (Ni), nickel-polyvinyl chloride (Ni-PVC) and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC) electrodes in alkaline solution has been investigated. The morphological characteristics of the electrode surface were studied using SEM and EDS, while the electrochemical behavior of the electrodes was studied using cyclic voltammetry (CV). It was found that composite electrodes (Ni-PVC and Ni-Co-PVC) have a porous, irregular and rough surface. In situ studies using electrochemical technique using those three electrodes exhibited electrochemical activity for redox system, as well as selectivity in the electrooxidation of ethanol to acetic acid. The studies also found that an electrokinetics and electrocatalytic activity behaviors of the electrodes prepared were Ni metal foil<Ni-PVC2/NiOOH and Co(OH)2/CoOOH catalysts which were determined by the XPS and cyclic voltammetry studies. A better electrokinetics and electrocatalytic activity behaviors electrodes, gave a better results in the electrooxidation of ethanol in alkaline solution.

Keywords


Electrooxidation; ethanol; nickel-polyvinyl chloride (Ni-PVC) and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC); alkaline solution

Full Text:

Full Text PDF


References

[1] Tarasevich, M.R., Karichev, Z.R., Bogdanovskaya, V.A., Lubnin, E.N., and Kapustin, A.V., 2005, Electrochem. Commun., 7, 2, 141–146.

[2] Pereira, M.G., Jimenez, M.D., Elizalde, M.P., Robledo, A.M., and Vante, N.A., 2004, Electrochim. Acta, 49, 22-23, 3917–3925.

[3] Kyriacou, D.K., 1981, Basics of Electroorganic Synthesis, John Wiley and Sons, New York, 1981, 110–115.

[4] Cox, P., and Pletcher, D., 1990, J. Appl. Electrochem., 20, 4, 549–554.

[5] Cox, P., and Pletcher, D., 1991, J. Appl. Electrochem., 21, 1, 11–13.

[6] Kaulen, J., and Schafer, H.J., 1982, Electrochim. Acta, 38, 22, 3299–3308.

[7] Vertes, G., Horanyi, G., and Nagy, F., 1972, Tetrahedron, 28, 1, 37–42.

[8] Kim, J.W., and Park, S.M., 1999, J. Electrochem. Soc., 146, 3, 1075–1080.

[9] Fleischmann, M., Korinek, K., and Pletcher, D., 1971, J. Electroanal. Chem., 31, 1, 39–49.

[10] Parpot, P., Pires, S.G., and Bettencourt, A.P., 2004, J. Electroanal. Chem., 566, 401–408.

[11] Yeo, I.H., and Johnson, D.C., 2001, J. Electroanal. Chem., 495, 110–119.

[12] Azar, M.H.P., and Nerbin, H.R., 2000, J. Electroanal. Chem., 488, 17-24.

[13] Lund, H., and Hammerich, O., 2001, Organic Electrochemistry, Marcel Dekker Inc., New York, 243–250.

[14] Belgsir, E.M., Bouhier, E., Essis-Yei, H., Kokoh, K.B., Beden, B., Huser, H., Leger, J.M., and Lamy, C., 1991, Electrochim. Acta, 36, 1157–1164.

[15] Nomura, Y., Iwahara, M., and Hongo, M., 1988, Appl. Environ. Microbiol., 54, 1, 137–141.

[16] Armstrong, R.D., Briggs, G.W.D., and Charles, E.A., 1988, J. Appl. Electrochem., 8, 215–220.

[17] Xu, C., Shen, P.K., Ji, X., Zeng, R., and Liu, Y., 2005, Electrochem. Commun., 7, 12, 1305–1308.

[18] Jimenez, M.M.D., Elizalde, M.P., Gonzalez, M., and Silva, R., 2000, Electrochim. Acta, 45, 25-26, 4187–4193.

[19] Casella, I.G., and Gatta, M., 2002, J. Electroanal. Chem., 534, 31–38.

[20] Shen, P.K., and Xu, C., 2006, Electrochem. Commun. 8, 1, 184–188.

[21] Kibria, A.K.M., and Taradfar, S.A., 2002, Int. J. Hydrogen Energy, 27, 9, 879–884.

[22] Davila, M.M., Elizalde, M.P., Mattusch, J., and Wennrich, R., 2001, Electrochim. Acta, 46, 20-21, 3189–3197.

[23] Davila, M.M., Elizalde, M.P., Gonzalez, M., Perez, M.A., and Silva, R., 1998, Electrochim. Acta, 44, 8-9, 1307–1316.

[24] Gonzalez, M., Elizalde, M.P., Banos, L., Poillerat, G., and Davila, M.M., 1999, Electrochim. Acta, 45, 4-5, 741–750.

[25] Raschkova, V., Kitova, S., Konstantinov, I., and Vitanov, T., 2002, Electrochim. Acta, 47, 10, 1555–1560.

[26] Ross, S.D., Finkelstein, M., and Rudd, E.F., 1975, Anodic Oxidation, Academic Press, New York, 216–220.

[27] Casella, I.G., Guascito, M.R., and Sannazzaro, M.G., 1999, J. Electroanal. Chem., 462, 2, 202–210.

[28] Casella, I.G., and Gatta, M.J., 1999, J. Electroanal. Chem., 476, 1, 54–63.

[29] Juskenas, R., Valsiunas, I., Pakstas, V., Selskis, A., Jasulaitiene, V., Karpaviciene, V., and Kapocius, V., 2006, Appl. Surface Sci., 253, 3, 1435–1442.

[30] Oliveira, M.C., and Rego, A.M.B., 2006, J. Alloys Comp., 425, 1-2, 64–68.

[31] Luo, P.F., Kuwana, T., Paul, D.K., and Sherwood, P.M.A., 1996, Anal. Chem., 68, 19, 3330–3337.

[32] Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., 1992, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, United States of America, 1–15.

[33] Tavares, A.C., Cartaxo, M.A.M., Pereira, M.I.S., and Costa, F.M., 1999, J. Electroanal. Chem., 464, 2, 187–197.

[34] Schenck, C.V., and Dillard, J.G., 1983, J. Colloid Interface Sci., 95, 2, 398–409.

[35] Casella, I., and Guascito, M.R., 1999, Electrochim. Acta, 45, 7, 1113–1120.

[36] Perry, C.C., Torres, J., Carlo, S.R., and Fairbrother, D.H.J., 2002, J. Vac. Sci. Technol., A, 20, 5, 1690–1698.

[37] Carlo, S.R., Perry, C.C., Torres, J., and Fairbrother, D.H.J., 2002, J. Vac. Sci. Technol., A, 20, 350–355.

[38] Schulze, M., and Gulzow, E., 2004, J. Power Sources, 127, 1-2, 252–263.

[39] Medway, S.L., Lucas, C.A., Kowal, A., Nichols, R.J., and Johnson, D.J., 2006, Electroanal. Chem., 587, 1, 172–181.

[40] Grden, M., and Klimek, K.J., 2005, Electroanal. Chem., 581, 1, 122–131.

[41] Seghiouer, A., Chevalet, J., Barhoun, A., and Lantelme, F., 1998, Electroanal. Chem., 442, 1, 113–123.

[42] de Souza, L.M.M., Kong, F.P., McLarnon, F.R., and Muller, R.H., 1997, Electrochim. Acta, 42, 8, 1253–1267.

[43] Zoltwski, P., 1993, Electrochim. Acta, 38, 2119–2133.

[44] Hahn, F., Beden, B., Croissant, M.J., and Lamy, C., 1986, Electrochim. Acta, 31, 3, 335–342.

[45] Hahn, F., Floner, D., Beden, B., and Lamy, C., 1987, Electrochim. Acta, 32, 1, 1631–1636.

[46] Wishvender, K.B., and Toni, J.E., 1971, J. Electroanal. Chem. Interfacial Electrochem., 31, 1, 63–75.

[47] Cataldi, T.R.I., Casella, I.G., Desimoni, E., and Rotunno, T., 1992, Anal. Chim. Acta, 270, 1, 161–171.

[48] Tapan, N.A., Mustain, W.E., and Prakash, J., 2005, Proceedings International Hydrogen Energy Congress and Exhibition IHEC, Istanbul, Turkey, 2–5.



DOI: https://doi.org/10.22146/ijc.21424

Article Metrics

Abstract views : 1873 | views : 1160


Copyright (c) 2011 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.