SYNTHESIS AND CHARATERISATION OF RICE HUSK SILICA BASED BOROSILICATE (B2SiO5) CERAMIC BY SOL-GEL ROUTES

https://doi.org/10.22146/ijc.21425

Simon Sembiring(1*)

(1) Material Research Group, Department of Physics, Faculty of Mathematics and Natural Science, Lampung University Jl. Prof. Soemantri Brojonegoro No.1, Bandar Lampung
(*) Corresponding Author

Abstract


In this research, borosilicate ceramics were produced from rice husk silica. Preparation of borosilicate ceramics was conducted by mixing boron oxide sol from borax with silica sol extracted from rice husk. The boron oxide was produced by hydrolysis of borax using H2SO4 5%. The samples were synthesized with different compositions, with the ratios of silica to boron oxide are 8:1, 8:2, 8:3 and 8:4. The samples were sintered at 900 °C. Functional groups were examined using FTIR spectroscopic technique. Structural and microstructural characteristics were examined by XRD and SEM, respectively. The chemical resistance of borosilicate is evaluated by gravimetric method using H2SO4, HCl, NaOH and KOH. The FTIR study revealed that the main functional groups are Si-O-Si, B-O-B, and B-O-Si. The x-ray diffraction (XRD) study revealed that the main crystalline phases are borosilicate (B2SiO5) and boron oxide (B2O3). SEM investigations clearly demonstrated that the smaller particle size was found with increasing in boron oxide concentration. From the chemical resistance test carried out, it was obtained that the produced borosilicate possessed high resistance to acids and alkalis.

Keywords


rice husk; silica; borosilicate; FTIR; XRD; SEM

Full Text:

Full Text PDF


References

[1] Monteiro, R.C.C, and Lima, M.M.R.A, 2003, J. Eur. Ceram. Soc., 23, 11, 1813–1818.

[2] Zawrah, M.F., and Hamzawy, E.M.A., 2002, Ceram. Int., 28, 2, 123–130.

[3] El-Khesen, A.A., and Zawrah, M.F., 2003, Ceram. Int., 29, 3,251–257.

[4] Du, L.S., Allwardt, J.R., Schmidt, B.C., and Stebbins, J.F., 2004, J. Non-Cryst. Solids, 337, 2, 196–200.

[5] Yoon, O.S, Kim, K.S, Kim, S, Shim, S.H, and Park, J.G., 2007, Mater. Forum, 544, 960–964.

[6] Soraru, G.D., Babonneu, F., Gervais, C., and Dallabona, N., 2000, J. Sol-Gel Sci. Technol., 18, 11–19.

[7] Liu, F., Guo, X.F., and Yang, G.C., 2001, J. Mater. Sci., 36, 3,579–585.

[8] Wolf, P.F., Mc-millan, Stebbin, J.F., Mc-millan, P.F., and Dingwell, 1995, J. Am. Miner. Soc., 505, 2345–2349.

[9] Greenhut, V.A, 1991, ASM International, Materials Park, OH, USA, 4, 298–311.

[10] Iwadate, Y., Hattori, T., Igarashi, K., and Mochinaga, J, 1989, J. Mater. Sci. Lett., 8, 9, 1079–1081.

[11] Della, V.P., Kuhn, I., and Hotza, D., 2002, Mater. Lett., 57, 4, 818–821.

[12] Yalcin, N., and Sevinc, V., 2001, Ceram. Int., 29, 219–224.

[13] Daifullah, A.A.M., Awwad, N.S., and El-reefy, S.A., 2004, Chem. Eng. Process., 43, 193–201.

[14] Hamdan, H., Muhid, M.N., Endud, S., Listiorini, E., and Ramli, Z., 1997, J. Non-Cryst. Solids, 211, 126–131.

[15] Real, C., Alcala, M.D., and Criado, J.M., 1996, J. Am. Ceram. Soc., 79, 2012–2016.

[16] Sembiring, S., 2007, Prosiding, Dies Natalis Universitas Lampung, 43, 203–209.

[17] Sembiring, S., and Karo-Karo, P., 2007, Jurnal Sains dan Teknologi, Mipa Unila, 13, 233–239.

[18] Ikram, N., and Akhter, M., 1988, J. Mater. Sci., 23, 7, 2379–2381.

[19] Naskar, M.K., and Chatterjjee, M., 2004, J. Eur. Ceram. Soc., 24, 3499–3507.

[20] Kurama, S., and Kurama, H., 2006, Ceram. Int., 32, 1–4.

[21] Sembiring, S., 2008, Prosiding Seminar Nasional Sains dan Teknologi II, Universitas Lampung, 2, 193–198.

[22] Sembiring, S., Manurung, P., and Karo-Karo, P., 2009, Jurnal Fisika dan Aplikasinya, FMIPA ITS, 5, 090107.

[23] Rahman, I.A., 1994, Ceram. Int., 20, 195–199.

[24] Romero, J.N., and Reinggo, F.R., 1996, J. Mater. Sci., 31, 779–784.

[25] Bose, S., Acharya, H.N., and Banerjee, H.D., 1993, J. Mater. Sci., 28, 5461–5468.

[26] Chatterjee, M., and Naskar M.K., 2006, J. Ceram. Int., 32, 623–632.

[27] Daifullah, A.A.M., Girgis, B.S., and Gad, H.M.H., 2003, J. Mater. Lett., 57, 1723–1731.

[28] Adam, F., Kandasamy, and Balakrishnan, S., 2006, J. Colloid Interface Sci., 304, 137–143.

[29] Azooz, M.A., Aiad, T.H.M.A., Elbatal, F.H., and Eltabii, G., 2008, Indian J. Pure Appl. Phys., 46, 880–888.

[30] Mansour R., Lafjah M., Djafri, F., and Bengueddach A., 2007, J. Korean Chem. Soc., 51, 178–185.

[31] Kundu, V., Dhiman, R.L., Maan, A.S., and Goyal, D.R., 2008, Adv. Condens. Mater. Phys., 25, 324–328

[32] Stoch, P., 2008, Opt. Appl, 38, 134–139

[33] Siqueira, R.L., Yoshida, I.V.P., Pardini, L.C., and Schiavon, M.A., 2007, J. Mater. Res., 10, 147–151.

[34] Peak, D., Luther, G., and Sparraks, D., 2003, Geochim. Cosmochim. Acta, 67, 2551–2560.

[35] Khabuanchalad, S., Khemthong, P., Prayoonpokarach, S., and Wittayakun, J., 2008, Suranaree J. Sci. Technol., 15, 3, 225–231.

[36] Ndazi, B.S., Karlsson, S., Tesha, J.V., and Nyahumwa, C.W., 2006, Composites Part A, 29, 1–11.

[37] Adam F., and Hann, C.J., 2004, J. Colloid Interface Sci., 280, 55–61.

[38] ICDD, Material Data Inc (1997), Livermore, CA.

[39] Goncalves, M.R.F, and Bergmann, C.P., 2006, Constr. Build. Mater., 30, 1–7.

[40] Boccaccini, A.R., Bernardo, E., Blain, L., and Boccaccini, D.N., 2004, J. Nucl. Mater., 327, 148–158.



DOI: https://doi.org/10.22146/ijc.21425

Article Metrics

Abstract views : 3480 | views : 1935


Copyright (c) 2011 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.