THEORETICAL STUDY OF SOLVENT EFFECTS AND NMR SHIELDING TENSORS OF DLPC

https://doi.org/10.22146/ijc.21649

M. Monajjemi(1*), S. Afsharnezhad(2), M.R. Jaafari(3), S. Mirdamadi(4), H. Monajemi(5), S. Mollaamin(6)

(1) Department of Physical Chemistry, Science & Research Branch, Islamic Azad University, P.O.Box:14155-775, Tehran
(2) Department of Biochemistry, Mashhad Azad university of Medical Science, Mashhad; Department of Physics, Karaj Branch, Karaj
(3) School of Pharmacy, Biotechnology Research Center, Mashhad University of Medical Science, Mashhad
(4) Biotechnology Center, Iranian Organization for Science and Technology (IROST)
(5) Department of Physics, Karaj Branch, Karaj
(6) Department of Chemistry, Qom Branch, Islamic Azad University, Qom
(*) Corresponding Author

Abstract


The effect of the polarity of the environment on the conformation zwitterionic membrane dilauroyl phosphatidylcholine (DLPC) has been investigated with calculation at the Hatree-Fock level using the 6-31G* basis set with Onsager continuum solvation model. The ‘Gauge Including Atomic Orbital' (GIAO) approach is used to investigate Ab initio GIAO calculations of NMR chemical shielding tensors carried out within SCF-Hartree-Fock approximation are described. In order to compare the calculated chemical shifts with experimental ones, it is important to use consistent nuclear shielding for NMR reference compounds like TMS. Conformation of DLPC was evaluated with four different solvents with different dielectric constant (Water (ε = 78.39), Dimethyl Sulfoxide (ε = 46.7), Acetone (ε = 20.7) and Heptane (ε = 1.92). In concern with conformational energy, Water could be the most suitable solvent for DLPC. Moreover, as the polarity of the medium increase, the conformational stability of this molecule increases faster than that of DLPC in the gas phase. Consequently, the relative energy of DLPC also depends on the polarity of the environment. This subject was considered as well as the most variable in some dihedral angles degree and NMR isotropic shift were in the less dielectric constant (ε = 1.92). It could be in polar medium DLPC conformer becomes additionally stabilized by intermolecular ionic and hydrogen bond interactions with polar neighboring molecules. On the basis of this work it can be concluded that the effect of the polarity of the environment clearly are influenced on the isotropic values by geometry variation due to intermolecular motion in molecule.


Keywords


Onsager continuum model; DLPC; NMR shielding; isotropic; solvent models; anisotropic

Full Text:

Full Text Pdf


References

[1] Jain, M.K., and Wagner, R.C., 1980, Introduction to Biological Membranes, John Wiley & Sons, New York.

[2] Peter, B., and Graham, S., 1974, Structural Chemistry of 1,2 Dilauroyl-DL-phosphatidylethanol-amine: Molecular Conformation and Intermolecular Packing of Phospholipids. Proc. Nat. Acad. Sci. USA. 71:3036-3040.

[3] Robert, B., and Jean-Marie, R., 1986, Biochem. J., 238, 1-11.

[4] Philippe, F.D. and Morris, R., 2004, Traffic, 5, 241-246

[5] Huang, P., Perez, J.J. and Loew. G.H., 1994, J. Biomol. Struct. Dyn. 11:927-956.

[6] Chiu, S.W., Clark, M., Balaji, V., Subramaniam, S., Scott, H.L., and Jakobsson, E., 1995, Biophys J. 69(4), 1230–1245.

[7] Cramer, C.J., 2002, Essentials of Computational Chemistry - Theories and Models, Wiley, New York.

[8] Truong, T. and Stefanovich, S., 1997, J. Chem. Phys., 107, 6-8.

[9] Bryan. M., and Kyungsun, K. 1996, J. Phys. Chem., 100:11775-11788.

[10] Ando, I., and Webb, G.A., 1983, Theory of NMR Parameters, Academic Press, London,

[11] Katarina. B, James H. Davis., 2000. Biophysical. J., 79:3201-3216.

[12] Finer, E.G., Flook, A.G. and Hauser, H., 1972, Biochem. Biophys. Acta, 260, 59-69.

[13] Landin, J., and Pascher, I., 1997, J. Phys. Chem. A. 101, 2996-3004

[14] Robinson, A.J., Richards, W.G., Thomas, P.J., and Hann, M.M., 1994, Biophys J. 67(6), 2345–2354.

[15] Schleyer, P.v.R., Radom, L., Hehre, W.J., Pople, J.A., 1986, Ab Initio Molecular Orbital Theory, Wiley, New York.

[16] Facell, J.C., Grant, D.M., Bouman, T.D., and Hansen, A.E., 1990, J. Comp. Chem., 11, 32.

[17] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, Jr., J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Raghavachari, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., and Pople, J.A., 1998, Gaussian 98 Revision A.7, Gaussian, Inc., Pittsburgh PA.

[18] Collins, J.B., Schleyer, P.v.R., Binkley, J.S., and Pople, J.A., 1976, J. Chem. Phys., 64, 5142.

[19] Wong, M.J. Wiberg, K.B.; Frisch, M. 1991, J. Chem. Phys., 95,`8991-8998.

[20] Sundaralingam, M., 1972, Ann. NY Acad. Sci., 195, 324-355.

[21] Hauser, H., Pascher, I., Pearson, R.H., Sundell, S., 1981, Biochim Biophys Acta, 650 (1), 21–51.

[22] Akutsu, H. and Kyogoku, Y., 1977, Chem. Phys. Lipids, 18, 285-303

[23] Pascher, I., and Sundell, S., 1986, Biochim. Biophys. Acta, 855, 68-78.

[24] Salsbury, N.J., Dark, A., and Chapman, D., 1972, Chem. Phys. Lipids. 8, 142-151.



DOI: https://doi.org/10.22146/ijc.21649

Article Metrics

Abstract views : 998 | views : 855


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.