OLIGOMERIC CHROMIUM(III) POLICATION SPECIES-PILLARED LAYERED TETRATITANATES ANION
Hari Sutrisno(1*), Endang Dwi Siswani(2)
(1) Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University (UNY), Karangmalang, Yogyakarta 55281
(2) Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University (UNY), Karangmalang, Yogyakarta 55281
(*) Corresponding Author
Abstract
Intercalation of oligomeric chromium(III) polycation species in layered tetratitanates was prepared by three steps: 1) ion-exchange of H+ for K+ in potasium tetratitanates, 2) intercalation of n-alchylamine (n-propylamine, n-butylamine, n-amylamine, and n-hexylamine) compounds in layered hydrogen tetratitanates by adding an aqueous solution of 5M n-alchylamine to hydogen titanates with stiring at room temperature, and 3) intercalation of oligomeric chromium(III) polycation species by mixing butylamine-intercalated tetratitanates with an aqueous solution of CrCl3.6H2O at pH various. The procedure was carried out by Chimie Douce method. The results showed that all of n-alchylamine-intercalated tetratitanates crystallize on monoclinic crystal system with the Bravais lattice C. The hight intensity of the first peaks (200) indicated that butylamine and amylamine-intercalated tetratitanates have a remarkably high crystallinity without impurities phase. The interlayered distance (d) and the lattice parameter projected along a increase with increasing the amount of C-atoms in n-alchylamine. At pH=1.3, [CrCl(H2O)5]2+ or [CrCl2(H2O)4]+ species was pillared more efective in layered tetratitanates than [Cr(H2O)6]3+ spesies and just one spesies, Cr(H2O)6]3+ at pH=1.7. On the contrary, [Cr(OH)(H2O)5]2+ or [Cr(OH)2(H2O)4]+ was intercalated more effevtive than [Cr(H2O)6]3+ species at pH=5.3.
Keywords
Full Text:
Full Text PDFReferences
[1] Ogawa, M. and Kuroda, K., 1995, Chem. Rev., 95, 399.
[2] Clearfield, A., 1988, Chem. Rev., 88, 125.
[3] Dion, M., Piffard, Y. and Tournoux, M., 1978, J. Inorg. Nucl. Chem., 40, 917.
[4] Marchand, R., Brohan, L., M’Bedi, R. and Tournoux, M., 1984, Rev. Chim. Min., 21, 476.
[5] Jolivet, J. P., 1994, De la Solution à l’oxide, Interedition & CNRS, Paris.
[6] Chen, Y., Hou, W., Guo, C., Yan, Q. and Chen, Y., 1997, J. Chem. Soc. Dalton Trans., 359.
[7] Hou, W., Yan, Q., and Fu, X., 1994, J. Chem. Soc. Chem. Commun., 1371.
[8] Hari Sutrisno, 2003, JMS FMIPA-ITB, 8(4), 10.
[9] Sazaki, T., Izumi, F and Watanabe, M., 1996, Chem. Mat., 8, 777.
[10] Evain, M. and Barbet, J.M., 1992, Samson vers. 2.0, IMN-Université de Nantes, Nantes.
[11] Evain, M., 1992, U-fit vers. 1.2, IMN-Université de Nantes, Nantes.
[12] Roisnel,T. and Ridriguez-Carvajal, J., 2001, WinPLOTR a Graphic Tool for Powder Diffraction, CNRS-Lab. de Chimie du Solide et Inorganique Moléculaire Université de Rennes, Rennes.
[13] Henry, M., Chatry, M., Deville, J., Bonhomme, C. and Taulelle, F., 1991, Phenomena de Complexation en Milieu Aqueux, Ecole d’ete Sol-Gel Tome 1. p. 115-143, Oleron.
DOI: https://doi.org/10.22146/ijc.21706
Article Metrics
Abstract views : 1422 | views : 1161Copyright (c) 2010 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.