THE PREFERENTIAL STRUCTURE OF Co2+ SOLVATION IN AQUEOUS AMMONIA SOLUTION DETERMINING BY MONTE CARLO SIMULATION

https://doi.org/10.22146/ijc.21710

Cahyorini Kusumawardani(1*), Sukisman Purtadi(2), Crys Fajar Partana(3), Harno Dwi Pranowo(4), Mudasir Mudasir(5)

(1) Chemistry Education Department, Faculty of Mathematics and Natural Sciences, State University of Yogyakarta, Karangmalang, Depok, Yogyakarta 55283, Indonesia
(2) Chemistry Education Department, Faculty of Mathematics and Natural Sciences, State University of Yogyakarta, Karangmalang, Depok, Yogyakarta 55283, Indonesia
(3) Chemistry Education Department, Faculty of Mathematics and Natural Sciences, State University of Yogyakarta, Karangmalang, Depok, Yogyakarta 55283, Indonesia
(4) Austrian–Indonesian Center for Computational Chemistry (AIC), Gadjah Mada University, Yogyakata
(5) Austrian–Indonesian Center for Computational Chemistry (AIC), Gadjah Mada University, Yogyakata
(*) Corresponding Author

Abstract


A Monte Carlo simulation was performed for Co2+ in 18.6 % aqueous ammonia solution at a temperature of 293.16 K, using ab initio pair potentials and three-body potentials for Co-H2O-H2O, Co-NH3-NH3 and Co-H2O-NH3 interactions. The first solvation shell consists average of 2.9 water and 3.2 ammonia molecules, and the second shell of 10.4 water and 11.2 ammonia molecules. The structure of the solvated ion is discussed in terms of radial distribution functions, angular distributions and coordination number.


Keywords


Molecular simulation; Monte Carlo simulation; solvation; ab initio

Full Text:

Full Text PDF


References

[1] Ohtaki, S; Touhara, H. and Nakanishi, K.; 1984, J. Chem. Phys. 81, 890.

[2] Tanaka, H.; Nakanishi, K. and Touhara, H.; 1984, J. Chem Phys. 81, 4065.

[3] Vaisman, I. I. and Berkowitz, M. L; 1992, J. Am. Chem. Soc. 114, 7889.

[4] Tanabe, Y. and Rode, B. M.; 1988, J. Chem. Soc., Faraday Trans. 2, 84, 679.

[5] Ferrario, M.; Haughney, M. H.; McDonald, I. R. and Klein, M. L.; 1990, J. Chem. Phys. 93, 5156.

[6] Visozo, S.; Heinzle, M. G. and Rode, B. M.; 1994, J. Chem. Soc., Faraday trans. 90, 2337.

[7] Puhovski, Y. P. and Rode, B. M.; 1995, J. Phys. Chem. 99, 1566.

[8] Mafune, F.; Hashimoto, Y. and Kondow T., 1997, Chem. Phys. Lett. 274, 127.

[9] Narusawa, H. and Nakanishi, K., 1990, J. Chem. Phys. 73, 4066.

[10] Rode, B. M. and Tanabe, Y., 1988, J. Chem. Soc., Faraday Trans. 2, 84, 1779.

[11] Tongraar, A. and Rode, B. M., 1999, J. Phys. Chem. A 103, 8524.

[12] Pranowo, H. D. and Rode, B. M., 2000, J. Chem. Phys. 112, 4212.

[13] Pranowo, H. D. and Rode B. M., 2001, Chem. Phys. 263, 1.

[14] Kheawsrikul, S.; Hannongbua, S. V. and Rode, B. M., 1990, Z. Naturforsch A 46, 111.

[15] Akesson, R.; Pettersson, L. G. M.; Sandström, M.; Siegbhan, P. E. M. and Wahlgren, U., 1993, J. Phys. Chem. 97, 3765.

[16] Akesson, R.; Pettersson, L. G. M.; Sandström, M. and Wahlgren, U., 1994, J. Am. Chem. Soc. 116, 8691.

[17] Akesson, R.; Pettersson, L. G. M.; Sandström, M. and Wahlgren, U., 1994, J. Am. Chem. Soc. 116, 8705.

[18] Rotzinger, F. P., 1996, J. Am. Chem. Soc. 118, 6760.

[19] Rotzinger, F. P., 1997, J. Am. Chem. Soc. 118, 5230.

[20] Lafont, A. G.; Lluch, J. M.; Olivia, A. and Bertran, J., 1987, Chem Phys. 111, 2319.

[21] Marini, G. W.; Texler, N. R. and Rode, B. M., 1996, J. Phys. Chem. 100, 6808.

[22] Pranowo, H. D. and Rode, B. M., 1999, J. Phys. Chem. A 103, 4298.

[23] Kusumawardani, C.; Pranowo, H. D.; Mudasir and Partana, C. F., 2006, Indo. J. Chem., 6, 3, 280.

[24] Pranowo, H. D.; Kusumawardani, C.; Mudasir and Purtadi, S., 2006, Chem. Phys. 324, 573.

[25] Benedict W. S. and Player, E. K., 1985, Can. J. Phys. 35, 890.

[26] Kuchitzu, K.and Morino, Y., 1965, Bull. Chem. Soc. Jpn, 38, 814.

[27] Frisch, M. J.; Trucks, G. W.; Sclegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J.V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzales, C.; Pople, J. A., 1999, GAUSSIAN 98, Gaussian, Inc., Pittsburgh, PA.

[28] Jansco, G. and Heinzinger, K.Z., 1985, Naturforsch, Part A, 40, 1235.

[29] Hannongbua, S., Ishida, T.; Spohr, E. And Heinzinger, K., 1988, Z. Naturforsch. 43a, 572.

[30] Allen, M. P. and Tiedesley, D. J., 1987, Computer Simulation of Liquids, Oxford University Press, Oxford.

[31] Metropolis, N.; Rosenbluth, A. W. and Teller, E., 1953, J. Chem Phys. 21, 1087.

[32] Marini, G. W.; Liedl, K.R. and Rode, B. M., 1996, J. Phys. Chem. A 284, 6808.



DOI: https://doi.org/10.22146/ijc.21710

Article Metrics

Abstract views : 1281 | views : 1317


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.