SOLVATION STRUCTURE DETERMINATION OF Ni2+ ION IN WATER BY MEANS OF MONTE CARLO METHOD

https://doi.org/10.22146/ijc.21915

Tutik Arindah(1*), Bambang Setiaji(2), Harno Dwi Pranowo(3)

(1) Austrian-Indonesian Centre for Computational Chemistry Gadjah Mada University, Yogyakarta
(2) Austrian-Indonesian Centre for Computational Chemistry Gadjah Mada University, Yogyakarta
(3) Austrian-Indonesian Centre for Computational Chemistry Gadjah Mada University, Yogyakarta
(*) Corresponding Author

Abstract


Determination of solvation structure of Ni2+ ion in water has been achieved using Monte Carlo method using canonic assemble (NVT constant). Simulation of a Ni2+ ion in 215 H2O molecules has been done under NVT condition (298.15 K). The results showed that number of H2O molecules surround Ni2+ ion were 8 molecules in first shell and 17 molecules in second shell, interaction energy of Ni2+-H2O in first shell was -68.7 kcal/mol and in second shell was -9.8 kcal/mol, and there were two angles of O-Ni2+-O, i.e. 74o and 142o. According to those results, the solvation structure of Ni2+ ion in water was cubic antisymetric.


Keywords


Water simulation; Monte Carlo simulation

Full Text:

Full Text PDF


References

[1] Ohtaki, H. and Radnai, T., 1993, Chem. Rev., 93, 1157.

[2] Bounds, D. G. Mol. Phys. 1985, 54, 1335.

[3] Tongraar, A., Liedl, K. R., and Rode, B. M., 1998, Chem. Phys. Lett., 286, 56.

[4] Kheawsrikul, S., Hannongbua, S.U., Kokpol, S.U., and Rode, B.M., 1989, J. Chem. Soc. Faraday Trans., 85(6), 643.

[5] Pranowo, H.D., Setiaji, A.H.B., and Rode, B.M., 1999, J. Phys. Chem. A, 103, 11115.

[6] Marini, G.W., Liedl, K.R., and Rode, B.M., 1999, J. Phys. Chem. A, 103, 11387.

[7] Gilson, H.S.R., and Krauss, M., 1998, J. Phys. Chem. A, 102, 6525.

[8] Clemmer, D. E., and Armentrout, P. B., 1991, J. Phys. Chem., 95, 3084.

[9] Texler, N. R., and Rode, B. M. J. Phys. Chem. 1995, 99, 15714.

[10] Arindah, T., 2000, Penentuan Struktur Solvasi ion Ni2+ di dalam Air dengan Metode Monte Carlo, Thesis, Pasca Sarjana Universitas Gadjah Mada, Yogyakarta.

[11] Jansco, G., Heinzinger, K., and Bopp, P., 1985, Z-Naturforsh, 34a, 1235

[12] Allen M. P., and Tildesley D. J., 1987, Computer Simulation of Liquids, Oxford University Press, Oxford, UK.

[13] Hoffmann, M.M., Darab, J.G., Palmer, B. J., and Fulton, J.L., 1999, J. Phys. Chem. A, 103, 8471

[14] Cordeiro, M. N. D. S., Gomes, J. A. N. F. A., Gonzales-Lafont, A., and Liuch, J. M., 1990, J. Chem. Phys., 141, 379.

[15] Murrel, J. N., and Jenkins, A.D., 1994, Properties of Liquids and Solutions; second edition, John Wiley & Sons, New York.

[16] Walker, N. R.; Firth, S., and Stace, A.J., 1998, Chem. Phys. Lett., 292, 125.

[17] Dunning Jr., T.H., 1970, J. Chem. Phys., 53, 2823.

[18] Hay, P.J. and Wadt, W.R., 1985, J. Chem.Phys., 82, 270.



DOI: https://doi.org/10.22146/ijc.21915

Article Metrics

Abstract views : 1252 | views : 2541


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.