Synthesis and In Vitro Evaluation of C-methylcalix[4]resorcinaryl octacinnamate and C-methylcalix[4]resorcinaryl octabenzoate as the Sunscreen

https://doi.org/10.22146/ijc.23575

Budiana I Gusti M. Ngurah(1*), Jumina Jumina(2), Chairil Anwar(3), Sunardi Sunardi(4), Mustofa Mustofa(5)

(1) Department of Chemistry, Faculty of Education and Teacher Training, Universitas Nusa Cendana, Jl. Soeharto No. 72, Kupang 85001
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21 Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21 Yogyakarta 55281
(4) Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281
(5) Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281
(*) Corresponding Author

Abstract


The present study was aimed to synthesize and evaluate sunscreen activity of C-methylcalix[4]resorcinaryl octacinnamate and C-methylcalix[4]resorcinaryl octabenzoate. The target compounds were synthesized in 2 steps. They were a synthesis of C-methylcalix[4]-resorcinarene via acid catalyzed the condensation of resorcinol and acetaldehyde by using HCl catalyst, followed by esterification using cinnamoyl chloride and benzoyl chloride. The characterization of the target compounds was performed by IR, 1H-NMR, 13C-NMR, and LC-MS spectrometers. The sunscreen activity test was conducted by spectroscopic method and MTT-assay. Commercial sunscreen p-amino benzoic acid (PABA) was used as a comparator to the MTT assay. The sunscreen activity test used spectroscopic showed that C-methylcalix[4]resorcinaryl octacinnamate and C-methylcalix[4]resorcinaryl octabenzoate can absorb the ultraviolet radiation between 280 and 320 nm (UV-B) with the maximum absorption at 290 nm (ε = 31.535 M-1 cm-1) and 282 nm (ε = 42.217 M-1 cm-1), respectively. The results of MTT-assay indicated that the IC50 of C-methylcalix[4]resorcinaryl octacinnamate, C-methylcalix[4]resorcinaryl octabenzoate and PABA are 12.006, 20.568 and 12.564 ppm, respectively, it means that the order of sunscreen activity is C-methylcalix-[4]resorcinaryl octacinnamate, PABA and C-methylcalix[4]resorcinaryl octabenzoate.


Keywords


synthesis; estherification; sunscreen; activity; characterization

Full Text:

Full Text Pdf


References

[1] Marrot, L., Belaidi, J.P., Lejeune, F., Meunier, J.R., Asselineau and Bernerd, F., 2004, Photostability of sunscreen products influences the efficiency of protection with regard to UV-induced genotoxic or photoageing-related endpoints, Br. J. Dermatol., 151 (6), 1234–1244.

[2] Burnett, M.E., and Wang S.Q., 2011, Current sunscreen controversies: a critical review, Photodermatol. Photoimmunol. Photomed., 27, 58–60.

[3] Mironava T., Hadjiargyrou, M., Simon, M., and Rafailovich, M.H., 2012, The effects of UV emission from CFL exposure on human dermal fibroblasts and keratinocytes in vitro, Photochem. Photobiol., 88 (6), 1497–1506.

[4] Dutra, E.A., da Costa e Oliviera, D.A.G., Kedor-Hackmann, E.R.M., and Santoro, M.I.R.M., 2004, Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry, Braz. J. Pharm. Sci., 40 (3), 381–383.

[5] Pentinga, S.E., Kuik, D.J., Bruynzeel, D.P., and Rustemeyer, T., 2009, Do ‘cinnamon-sensitive’ patients react to cinnamate UV filters?, Contact Dermatitis, 60 (4), 210–213.

[6] Sax, B.W., 2000, Educating Consumers about sun protection, Pharm. Times, 66 (5), 48–50.

[7] Chawla, H.M., Pant, N., Kumar, S., Mrig, S., Srivastava, B., Kumar, N., and Black, D.StC., 2011, Synthesis and evaluation of novel tetrapropoxycalix[4]arene enones and cinnamates for protection from ultraviolet radiation, J. Photochem. Photobiol., B, 105 (1), 25–33.

[8] Nicod, L., Chitry, F., Gaubert, E., Lemaire, M., and Barnier, H., 1999, application of water soluble resorcinarenes in nanofiltration-complexation with caesium and strontium as targets, J. Inclusion Phenom. Macrocyclic Chem., 34 (2), 143–145.

[9] Tunstad, L.M., Tucker, L.A., Dalanale, E., Weiser, J., Bryant, J.A., Sherman, J.C., Helgeson, R.C., Knobler, C.B., and Cram, D.J., 1989, Host-guest complexation. 48. Octol building blocks for cavitands and carcerands, J. Org. Chem., 54 (6), 1305–1312.

[10] Jain, V.K., Kanaiya, P.H., and Bhojak, N., 2008, Synthesis, spectral characterization of azo dyes derived from calix[4]resorcinarene and their application in dyeing of fibers, Fibers Polym., 9 (6), 720–721.

[11] Botta, B., Cassani, M., D’Acquarica, I., Misiti, D., Subissati, D., and Delle Monache, G., 2005, Resorcarenes: emerging class of macrocyclic receptors, Curr. Org. Chem., 9, 337–355.

[12] Utzig, E., Pietraszkiewicz, O., and Pietraszkiewicz, M., 2004, Thermal analysis of calix[4]resorcinarene complexes with secondary and tertiary amines, J. Therm. Anal. Calorim., 78 (3), 973–980.

[13] Kazakova, K.H., Ziganshina, A., Muslinkina, L., Morozova, J., Makarova, N., Mustafina, A., and Habicher, 2002, The complexation properties of the water-soluble tetrasulfonatomethylcalix[4] resorcinarene toward α-aminoacids, J. Inclusion Phenom. Macrocyclic Chem., 43 (1), 65–69.

[14] Barnes, C.L., and Bosch, E., 2007, Self-assembly of C-methyl calix[4]resorcinarene with 5,5'-bipyrimidine, J. Chem. Crystallogr., 37, 783–784.

[15] Bayeh, N.K., Kogej, M., Ahman, A., Rissanen, K., and Schalley, C.A., 2006, Flying capsules: mass spectrometric detection of pyrogallarene and resorcinarene hexamers, Angew. Chem. Int. Ed., 45 (31), 5214–5216.

[16] Sukwattanasinitt, M., Rojanathanes, R., Tuntulani, T., Sritana-Anant, Y., and Ruangpornvisuti, V., 2001, Synthesis of stilbene crown ether p-tert-butylcalix[4]arenes, Tetrahedron Lett., 42 (31), 5291–5293.

[17] Ngurah, B.I.G.M., Jumina, Anwar, C., Mustofa, and Sahadewa, 2014, Synthesis of benzoyl C-phenylcalix[4]resorcinaryl octaacetate and cinnamoyl C-phenylcalix[4]arene for UV absorbers, Indones. J. Chem., 14 (2), 160–167.

[18] Bakand, S., Winder, C., Khalil, C., and Hayes, A., 2006, A novel in vitro exposure technique for toxicity testing of selected volatile organic compounds, J. Environ. Monit., 8, 100–103.

[19] Potera, C., 2007, More human, more humane: a new approach for testing airborne pollutants, Environ. Health Perspect., 115 (3), A148–A151.

[20] Gasparro, P., Mitchnick, M., and Nash, J., 1998, A review of sunscreen safety and efficacy, Photochem. Photobiol., 68 (3), 243–245.



DOI: https://doi.org/10.22146/ijc.23575

Article Metrics

Abstract views : 3501 | views : 2702


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.