The Development of Reproducible and Selective Uric Acid Biosensor by Using Electrodeposited Polytyramine as Matrix Polymer

https://doi.org/10.22146/ijc.25818

Manihar Situmorang(1*), Isnaini Nurwahyuni(2)

(1) Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Medan, Jl. Willem Iskandar Psr V, Medan 20221, North Sumatera, Indonesia
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatra Utara, Jl. Bioteknologi No 1 Kampus USU Padang Bulan, Medan 20155, North Sumatera, Indonesia
(*) Corresponding Author

Abstract


A versatile method for the construction of reproducible and high selective uric acid biosensor is explained. Electrodeposited polytyramine is used as biosensor matrixes due to its compatibility to immobilize enzyme uric oxidase in the membrane electrode. The precise control over the charge passed during deposition of polytyramine allows concomitant control over the thickness of the deposited enzyme layers onto the surface of the electrode. The uric acid biosensor showed a sensitive response to uric acid with a linear calibration curve lies in the concentration range of 0.1–2.5 mM, slope 0.066 µA mM-1, and the limit detection was 0.01 mM uric acid (S/N = 3). The biosensor shown excellent reproducibility, the variation between response curves for uric acid lies between RSD 1% at low concentrations and up to RSD 6% at saturation concentration. Uric acid biosensor is free from normal interference. The biosensor showed good stability and to be applicable to determine uric acid in real samples. Analysis of uric acid in the reference standard serum samples by the biosensor method are all agreed with the real value from supplier. Standard samples were also analyzed independently by two methods: the present biosensor method and the standard UV-Vis spectrophotometry method, gave a correlation coefficient of 0.994. This result confirms that the biosensor method meets the rigid demands expected for uric acid in real samples.

Keywords


uric acid biosensor; electrodeposited polytyramine; polymer matrix; reproducible; selective

Full Text:

Full Text PDF


References

[1] Jin, M., Yang, F., Yang, I., Yin, Y., Luo, J.J., Wang, H., and Yang, X.F., 2012, Uric acid, hyperuricemia and vascular diseases, Front. Biosci., 17, 656–669.

[2] Rock, K.L., Kataoka, H., and Lai, J.J., 2013, Uric acid as a danger signal in gout and its comorbidities, Nat. Rev. Rheumatol., 9 (1), 13–23.

[3] Johnson, R.J., Nakagawa, T., Jalal, D., Sánchez-Lozada, L.G., Kang, D.H., and Ritz, E., 2013, Uric acid and chronic kidney disease: which is chasing which?, Nephrol. Dial. Transplant., 28 (9), 2221–2228.

[4] Mehta, T., Nuccio, E., McFann, K., Madero, M., Sarnak, M.J., and Jalal, D., 2015, Association of Uric Acid with vascular stiffness in the Framingham Heart Study, Am. J. Hypertens., 28 (7), 877–883.

[5] Hsu, P.F., Chuang, S.Y., Cheng, H.M., Sung, S.H., Ting, C.T., Lakatta, E.G., Yin, F.C., Chou, P., and Chen, C.H., 2013, Associations of serum uric acid levels with arterial wave reflections and central systolic blood pressure, Int. J. Cardiol., 168 (3), 2057–2063.

[6] Ficociello, L.H., Rosolowsky, E.T., Niewczas, M.A., Maselly, N.J., Weinberg, J.M., Asheingrau, A., Eckfeldt, J.H., Stanton, R.C., Galecki, A.T., Doria, A., Warram, J.H., and Krolewski, A.S., 2010, High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes, Diabetes Care, 33 (6), 1337–1343.

[7] Jankowska, D.A., Trautwein-Schult, A., Cordes, A., Bode, R., Baronian, K., and Kunze, G., 2015, A novel enzymatic approach in the production of food with low purine content using Arxula adeninivorans endogenous and recombinant purine degradative enzymes, Bioengineered, 6 (1), 20–25.

[8] Vasilevsky, A.M., Gerasimchuk, R.P., Zemchenkov, A.Y., Konoplev, G.A., Rubinsky, A.V., Stepanova, O.S., and Frorip, A.A., 2015, Dual-wavelength optoelectronic sensor for monitoring uric acid concentration in dialysate, Biomed. Eng., 49 (3), 125–128.

[9] Numnuam, A., Thavarungkul, P., and Kanatharana, P., 2014, An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles, Anal. Bioanal. Chem, 406 (15), 3763–3772.

[10] Zhang, Y., Yan, M., Gao, P., Jiang, J., Zhang, G., Li, J., and Shuang, S., 2015, Immobilization of uricase-gold nanoparticles composite nanomaterial on a biofilm and its application to determination of uric acid, Appl. Biochem. Microbiol., 51 (4), 470–478.

[11] Liu, X., Wei, S., Chen, S., Yuan, D., and Zhang, W., 2014, Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid, Appl. Biochem. Biotechnol, 173 (7), 1717–1726.

[12] Ghodsi, J., Rafati, A.A., and Shoja, Y., 2016, First report on hemoglobin electrostatic immobilization on WO3 nanoparticles: Application in the simultaneous determination of levodopa, uric acid, and folic acid, Anal. Bioanal. Chem., 408 (14), 3899–3909.

[13] Chauhan, N., Kumar, A., and Pundir, C.S., 2014, Construction of an uricase nanoparticles modified Au electrode for amperometric determination of uric acid, Appl. Biochem. Biotechnol., 174 (4), 1683–1694.

[14] Hall, E.A.H., 1991, Biosensor, Prentice Hall, Englewood Cliffs, New Jersey.

[15] Arora, K., Choudhary, M., and Malhotra, B.D., 2014, Enhancing performance of uricase using multiwalled carbon nanotube doped polyaniline, Appl. Biochem. Biotechnol., 174 (3), 1174–1187.

[16] Lupu, S., Lete, C., Balaure, P.C., Caval, D.I., Mihailciuc, C., Lakard, B., Hihn, J.Y., and del Campo, F.J., 2013, Development of amperometric biosensors based on nanostructured tyrosinase-conducting polymer composite electrodes, Sensors, 13 (5), 6759–6774.

[17] Yoon, H., 2013, Current trends in sensors based on conducting polymer nanomaterials, Nanomaterials, 3 (3), 524–549.

[18] Situmorang, M., Gooding, J.J., and Hibbert, D.B., 1999, Immobilisation of enzyme throughout a polytyramine matrix: A versatile procedure for fabricating biosensors, Anal. Chim. Acta, 394 (2-3), 211–223.

[19] Sinaga, M., and Situmorang, M., 2015, Sensor spektrofotometri untuk penentuan pengawet nitrit, Indonesian Patent, Application No P00201508158.

[20] Situmorang, M., 2010, Kimia Analitik Lanjut dan Instrumentasi, FMIPA UNIMED Publisher, Indonesia.

[21] Sinaga, M., Naibaho, R.T., and Situmorang, M., 2013, Rancang bangun sensor kimia dalam deteksi spektrofotometri untuk penentuan pengawet nitrit, Semirata, 1 (1), 251–254.

[22] Situmorang, M., and Nurwahyuni, I., 2013, Biosensor elektrokimia untuk penentuan asam urat, Indonesian Patent, Application No. P00201304727.

[23] Situmorang, M., Silitonga, P.M., Nurwahyuni, I., Siregar, L.S., and Purba, R., 2012, Pengembangan metode analisis spektrofotometry untuk penentuan kolesterol di dalam makanan tradisional, Jurnal Saintika, 12 (2), 90–97.

[24] Sihombing, E., Situmorang, M., Sembiring, T., and Nasruddin, 2015, The development of mercury ion selective electrode with ionophore 7,16-Di-(2-methylquinolyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (DQDC), Modern Appl. Sci., 9 (8), 81–90.

[25] Situmorang, M., and Nurwahyuni, I., 2013, Amperometric biosensor for the determination of cholesterol in traditional food samples, Proceeding of The 2nd International Conference of the Indonesian Chemical Society, UII Yogyakarta, Indonesia, 22-23th October 2013, 91–99.

[26] Situmorang, M., Hibbert, D.B., Gooding, J.J., and Barnett, D., 1999, A sulfite biosensor fabricated using electrodeposited polytyramine: Application to wine analysis, Analyst, 124 (12), 1775–1779.

[27] Situmorang, M., 2012, The development of biosensor by using electrodeposited polymer and its application, Proceeding of International Seminar of Analytical, Medan, Indonesia, 12-14th November 2012, 234–244.



DOI: https://doi.org/10.22146/ijc.25818

Article Metrics

Abstract views : 3035 | views : 2705


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.