New Trident Molecule with Phosphoric Acid Functionality for Trivalent Rare Earth Extraction
Keisuke Ohto(1*), Hiromasa Murashima(2), Hiroshi Murakami(3), Shintaro Morisada(4), Hidetaka Kawakita(5), Marco Wenzel(6), Jan J. Weigand(7), Karsten Gloe(8)
(1) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(2) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(3) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(4) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(5) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(6) Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, Mommsenstr. 4, Hempel Bau, 01062 Dresden, Germany
(7) Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, Mommsenstr. 4, Hempel Bau, 01062 Dresden, Germany
(8) Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, Mommsenstr. 4, Hempel Bau, 01062 Dresden, Germany
(*) Corresponding Author
Abstract
Tripodal extraction reagent with three phosphoric acid groups, together with the corresponding monopodal molecule has been prepared to investigate some metals extraction behavior, in particular, trivalent rare earth elements (REEs). The tripodal reagent exhibited extremely high selectivity for metals with high valency such as Zr(IV), In(III), Lu(III), and Fe(III). Tripodal reagent also exhibited exceptionally high extraction ability compared with the corresponding monopodal one in the extraction of trivalent rare earths. The result for the stoichiometry of tripodal reagent to heavy rare earths showed the inflection point between Er (2:1 for a ligand with ion) and Tm (1:1). The extraction reactions were determined for all rare earths with both reagents. The extraction equilibrium constants (Kex), the separation factors (β), half pH values (pH1/2), difference half pH values (ΔpH1/2) for extraction of REEs with both reagents are estimated.
Keywords
Full Text:
Full Text PDFReferences
[1] Villani, F., 1980, Rare Earth Technology and Applications, Noyes, New Jersey.
[2] Sekine, T., and Hasegawa, Y., 1977, Solvent Extraction Chemistry, Marcel Dekker, New York, 3–9.
[3] Cox, M., 1988, Solvent Extraction Principles and Practice, Revised and Expanded, Ellis Horwood Ltd., Chichester, 151–158.
[4] Inoue, K., and Nakashio, F., 1982, Industrial chelating extractants. Their development and recent advances, Chem. Eng. Jpn., 46 (3), 164–171.
[5] Peppard, D.F., Mason, G.W., Maier, J.L., and Driscoll, W.J., 1957, Fractional extraction of the lanthanides as their di-alkyl orthophosphates, J. Inorg. Nucl. Chem., 4 (5-6), 334–343.
[6] Peppard, D.F., Mason, G.W., Maier, J.L., and Driscoll, W.J, 1965, Extraction of selected trivalent lanthanide and actinide cations by bis(hexoxy-ethyl) phosphoric acid, J. Inorg. Nucl. Chem., 27 (7), 1683–1691.
[7] Yuan, C., Ye, W., Ma, H., Wang, G., Long, H., Xie, J., Qin, X., and Zhou, Y., 1982, Synthesis of acidic phosphates and phosphonates and their structure-reactivity studies on the extraction of neodymium, samarium, ytterbium and ytterium, Sci. Sin. Ser. B, 25 (1), 7–20.
[8] Yuan, C., Yan, J., Feng, H., Long, H., Wu, F., and Jin, P., 1987, Extraction chemistry of rare earths by mono-alkyl isopropylphosphonates, Sci. Sin. Ser. B, 30 (7), 681–691.
[9] Yuan, C., and Hu, S., 1988, Correlation analysis in structure and reactivity studies of mono-basic phosphorus esters in rare earth extraction, Sci. Sin. Ser. B, 31 (2), 137–146.
[10] Ohto, K., Inoue, K., Goto, M., Nakashio, F., Nagasaki, T., Shinkai, S., and Kago, T., 1993, Solvent extraction of trivalent yttrium, holmium, and erbium by novel types of acidic organophosphonates, Bull. Chem. Soc. Jpn., 66 (9), 2528–2535.
[11] Yoshizuka, K., Kosaka, H., Shinohara, T., Ohto, K., and Inoue, K., 1996, Structural effect of phosphoric esters having bulky substituents on the extraction of rare earth elements, Bull. Chem. Soc. Jpn., 69 (3), 589–596.
[12] Gutsche, C.D., 1996, Calixarenes Revisited, Royal Society of Chemistry, Cambridge.
[13] Asfari, Z., Boehmer, V., Harrowfield, J.M., and Vicens, J., 2001, Calixarenes 2001, Kluwer, Dordrecht.
[14] Lumetta, G.J., Rogers, R.D., and Gopalan, A.S., 2000, Calixarenes for separations, ACS Symp. Ser., 757, American Chemical Society, Washington, DC.
[15] Ohto, K., 2010, Review of the extraction behavior of Metal cations with calixarene derivatives, Solvent Extr. Res. Dev., Jpn., 17, 1–18.
[16] Ohto, K., 2014, “Molecular Design and Metal Extraction Behavior of Calixarene Compounds as Host Extractants” in Ion Exchange and Solvent Extraction: Volume 21, Supramolecular Aspects of Solvent Extraction, Moyer, B.A., ed., CRC Press, Boca Raton, FL, 21, 81–127.
[17] Jurečka, P., Vojtíšek, P., Novotný, K., Rohovec, J., and Lukeš, I., 2002, Synthesis, characterisation and extraction behaviour of calix[4]arene-based phosphonic acids, J. Chem. Soc., Perkin Trans. 2, 2 (7), 1370–1377.
[18] Matulková, I., and Rohovec, J., 2005, Synthesis, characterization and extraction behaviour of calix[4]arene with four propylene phosphonic acid groups on the lower rim, Polyhedron, 24 (2), 311–317.
[19] Ohto, K., Ota, H., and Inoue, K., 1997, Solvent extraction of rare earths with a calix[4]arene compound containing phosphonate groups introduced to the upper rim, Solvent Extr. Res. Dev., Jpn., 4, 167–182.
[20] Ohto, K., Matsufuji, T., Yoneyama, T., Tanaka, M., Kawakita, H., and Oshima, T., 2011, Preorganized, cone-conformational calix[4]arene possessing four propylenephosphonic acids with high extraction ability and separation efficiency for trivalent rare earth elements, J. Inclusion Phenom. Macrocyclic Chem., 71 (3-4), 489–497.
[21] Ohto, K., Takedomi, A., Chetry, A.B., Morisada, S., Kawakita, H., and Oshima, T., 2013, The effect of phenoxy oxygen atoms on extremely high extraction ability and less separation efficiency of trivalent rare earth elements with tetraphosphonic acid derivative of calix[4]arene, J. Inclusion Phenom. Macrocyclic Chem., 77 (1-4), 363–373.
[22] Chetry, A.B., Matsufuji, T., Adhikari, B.B., Morisada, S., Kawakita, H., Ohto, K., and Oshima, T., 2015, Intramolecular synergism for group separation extraction of trivalent rare earths with a cross type calix[4]arene with phosphonic and carboxylic acid bifunctionality, J. Inclusion Phenom. Macrocyclic Chem., 81 (3), 301–310.
[23] Tanaka, M., Morisada, S., Kawakita, H., Inoue, K., and Ohto, K., 2015, Synthesis of a cross phosphonic acid type calix[4]arene with two different spacers and its extractive separation of rare earth metals , J. Inclusion Phenom. Macrocyclic Chem., 82 (1-2), 33–41.
[24] Ohto, K., Yano, M., Inoue, K., Yamamoto, T., Goto, M., Nakashio, F., Shinkai, S., and Nagasaki, T., 1995, Solvent extraction of trivalent rare earth metal ions with carboxylate derivatives of calixarenes, Anal. Sci., 11 (6), 893–902.
[25] Ohto, K., Nakagawa, H., Furutsuka, H., Shinohara, T., Nakamura, T., Oshima, T., and Inoue, K., 2004, Solvent extraction of rare earths with a novel phosphonate extractant providing a narrow coordination site, Solvent Extr. Res. Dev., Jpn., 11, 121–134.
[26] Ohto, K., Ueda, Y., Kawakita, H., Morisada, S., and Inoue, K., 2017, Silver Recovery from Assorted Spent Sources: Toxicology of Silver Ion, Imperial College Press, London, in press.
[27] Furugou, H., Ohto, K., Kawakita, H., Harada, H., and Inoue, K., 2007, Preparation of thioester type of broom extractant with silver selectivity, Ars Separatoria Acta, 5, 68–75.
[28] Yamamoto, C., Seto, H., Ohto, K., Kawakita, H., and Harada, H., 2011, Effect of π electrons on the detection of silver ions by ion-selective electrodes containing tripodal broom molecules as an ionophore, Anal. Sci., 27 (4), 389–393.
[29] Yamaguma, R., Yamashita, A., Kawakita, H., Miyajima, T., Takemura, C., Ohto, K., and Iwachido, N., 2012, Selective extraction of precious metal ions with novel trident molecules containing pyridyl groups, Sep. Sci. Technol., 47 (9), 1303–1309.
[30] Ueda, Y., Morisada, S., Kawakita H., and Ohto, K., 2013, Solvent extraction behavior of silver ion with secondary phenylamide derivative of trident molecule, Solvent Extr. Res. Dev., Jpn., 20, 53–63.
[31] Ueda, Y., Morisada, S., Kawakita H., and Ohto, K., 2014, Solvent extraction behavior of divalent palladium ion with phenylurea derivative of trident molecule, Solvent Extr. Res. Dev., Jpn., 21 (1), 9–19.
[32] Ueda, Y., Morisada, S., Kawakita H., and Ohto, K., 2016, High extraction ability and selectivity of a tripodal pivalamide derivative for Pt(Ⅳ) from hydrochloric acid solutions, Sep. Sci. Technol., 51 (15-16), 2700–2707.
[33] Ohto, K., Furugou, H., Yoshinaga, T., Morisada, S., Kawakita H., and Inoue, K., 2017, Precious metal extraction with thiol and dithioether derivatives of trident molecule, Solvent Extr. Res. Dev., Jpn., 24 (2), 77–88.
[34] Schurink, H.B.J., 1941, Pentaerythritol, Org. Synth. Coll., 1, 425–427.
[35] Hein, F., and Burkhardt, R., 1957, II. Über komplexverbindungen des 1.1.1-tris-aminomethyl-propans, Chem. Ber., 90 (6), 928–935.
DOI: https://doi.org/10.22146/ijc.26880
Article Metrics
Abstract views : 4101 | views : 2204Copyright (c) 2017 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.