Qualitative and Quantitative Phase-Analysis of Undoped Titanium Dioxide and Chromium Doped Titanium Dioxide from Powder X-Ray Diffraction Data
Hari Sutrisno(1*), Ariswan Ariswan(2), Dyah Purwaningsih(3)
(1) Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta (UNY), Jl. Colombo No.1, Yogyakarta 55281, Indonesia
(2) Department of Physics Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta (UNY), Jl. Colombo No.1, Yogyakarta 55281, Indonesia
(3) Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta (UNY), Jl. Colombo No.1, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Yang, L., Hakki, A., Wang, F., and Macphee, D.E., 2018, Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement, Appl. Catal., B, 222, 200–208.
[2] Chen, F., Zou, W., Qu, W., and Zhang, J., 2009, Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process, Catal. Commun., 10 (11), 1510–1513.
[3] Munusamy, S., Aparna, R.S.L., and Prasad, R.G.S.V., 2013, Photocatalytic effect of TiO2 and the effect of dopants on degradation of brilliant green, Sustainable Chem. Processes, 4 (4), 1–4.
[4] Haghi, M., Hekmatafshar, M., Janipour, M.B., Gholizadeh, S.S., Faraz, M.K., Sayyadifar, F., and Ghaedi, M., 2012, Antibacterial effect of TiO2 nanoparticles on pathogenic strain of E. coli, IJABR, 3 (3), 621–624.
[5] Visai, L., De Nardo, L., Punta, C., Melone, L., Cigada, A., Imbriani, M., and Arciola, C.R., 2011, Titanium oxide antibacterial surfaces in biomedical devices, Int. J. Artif. Organs, 34 (9), 929–946.
[6] Günes, S., Marjanovic, N., Nedeljkovic, J.M., and Sariciftci, N.S., 2008, Photovoltaic characterization of hybrid solar cells using surface modified TiO2 nanoparticles and poly(3-hexyl)thiophene, Nanotechnology, 19 (42), 424009.
[7] Jasim, K., 2012, Natural dye-sensitized solar cell based on nanocrystalline TiO2, Sains Malaysiana, 41 (8), 1011–1016.
[8] Grätzel, M., 2005, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem., 44 (20), 6841–6851.
[9] Yan, P., Wang, X., Zheng, X., Li, R., Han, J., Shi, J., Li, A., Gan, Y., and Li, C., 2015, Photovoltaic device based on TiO2 rutile/anatase phase junctions fabricated in coaxial nanorod arrays, Nano Energy, 15, 406–412.
[10] Masuda, Y., and Kato, K., 2008, Liquid-phase patterning and microstructure of anatase TiO2 films on SnO2:F substrates using superhydrophilic surface, Chem. Mater., 20 (3), 1057–1063.
[11] Kim, H.M., Seo, S.B., Kim, D.Y, Bae, K., and Sohn, S.Y., 2013, Enhanced hydrophilic property of TiO2 thin film deposited on glass etched with O2 plasma, Trans. Electr. Electron. Mater., 14 (3), 152–155.
[12] Yang, L., Zhang, M., Shi, S., Lv, J., Song, X., He, G., and Sun, Z., 2014., Effect of annealing temperature on wettability of TiO2 nanotube array films, Nanoscale Res. Lett., 9 (1), 621.
[13] Hanaor, D.A.H., and Sorrell, C.C., 2011, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46 (4), 855–874.
[14] Baur, W.H., 1961, Atomabstéinde und Bindungswinkel im Brookit, TiO2, Acta Cryst., 14, 214–216.
[15] Dette, C., Pérez-Osorio, M.A., Kley, C.S., Punke, P., Patrick, C.E., Jacobson, P., Giustino, F., Jung, S.J., and Kern, K., 2014, TiO2 anatase with a bandgap in the visible region, Nano Lett., 14 (11), 6533–6538.
[16] Pascual, J., Camassel, J., and Mathieu, H., 1978, Fine structure in the intrinsic absorption edge of TiO2, Phys. Rev. B: Condens. Matter, 18 (10), 5606–5614.
[17] Zallen, R. and Moret, M.P., 2006, The optical absorption edge of brookite TiO2, Solid State Commun., 137 (3), 154–157.
[18] Uyanga, E., Gibaud, A., Daniel, P., Sangaa, D., Sevjidsuren, G., Altantsog, P., Beuvier, T., Lee, C.H., and Balagurov, A.M., 2014, Structural and vibrational investigations of Nb-doped TiO2 thin films, Mater. Res. Bull., 60, 222–231.
[19] Suwarnkar, M.B., Dhabbe, R.S., Kadam, A.N., and Garadkar, K.M., 2014, Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method, Ceram. Int., 40 (4), 5489–5496.
[20] Lei, X.F., .Xue, X.X., and Yang, H., 2014, Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light, Appl. Surf. Sci., 321, 396–403.
[21] Avansi, W.Jr., Arenal, R., de Mendonça, V.R., Ribeiro, C., and Longo, E., 2014, Vanadium-doped TiO2 anatase nanostructures: the role of V in solid solution formation and its effect on the optical properties, CrystEngComm, 16 (23), 5021–5027.
[22] Moradi, H., Eshaghi, A., Hosseini, S.R., and Ghani, K., 2016, Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation, Ultrason. Sonochem., 32, 314–319.
[23] Zhao, Y., Li, C., Liu, X., Gu, F., Du, H.L., and Shi, L., 2008, Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen–oxygen diffusion flame, Appl. Catal., B, 79 (3), 208–215.
[24] Peng, Y.H., Huang, G.F., and Huang, W.Q., 2012, Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films, Adv. Powder Technol., 23 (1), 8–12.
[25] Dubey, R.S., and Singh, S., 2017, Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method, Results Phys., 7, 1283–1288.
[26] Ould-Chikh, S., Proux, O., Afanasiev, P., Khrouz, L., Hedhili, M.N., Anjum, D.H., Harb, M., Geantet, C., Basset, J.M., and Puzenat, E., 2014, Photocatalysis with chromium-doped TiO2: Bulk and surface doping, ChemSusChem, 7 (5), 1361–1371.
[27] Klug, H.P., and Alexander, L.E., 1954, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, John Wiley & Sons., New York, 992.
[28] Snyder, R.L. and Bish, D.L., 1989, “Quantitative Analysis” in Modern Powder Diffraction, Bish, D.L., and Post, J.E., Eds., Mineralogical Society of America, Washington, D.C., 20, 101–144.
[29] Bish, D.L, and Howard, S.A., 1988, Quantitative phase analysis using the Rietveld method, J. Appl. Crystallogr., 21, 86–91.
[30] Pecharsky, V., and Zavalij, P., 2009, Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Ed., Springer-Verlag US, 744.
[31] Rich, R., 2007, Inorganic Reactions in Water, 1st Ed., Springer-Verlag Berlin Heidelberg, 521.
[32] Rietveld, H.M., 1969, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst., 2, 65–71.
[33] Roisnel, T., and Ridriguez-Carvajal, J., 2009, Winplotr a graphic tool for powder diffraction, CNRS-Lab. de Chimie du Solide et Inorganique Moléculaire Université de Rennes.
[34] Rodríguez-Carvajal, J., 2009, An Introduction to the Program Fullprof, Laboratoire Léon Brillouin (CEA-CNRS) CEA/Saclay, Gif sur Yvette, France.
[35] Shannon, R.D., 1976, Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst., A32, 751–767.
DOI: https://doi.org/10.22146/ijc.28892
Article Metrics
Abstract views : 4232 | views : 7018Copyright (c) 2018 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.