Optimization Method for Bioethanol Production from Giant Cassava (Manihot esculenta var. Gajah) Originated from East Kalimantan

https://doi.org/10.22146/ijc.31141

Krishna Purnawan Candra(1*), Kasma Kasma(2), Ismail Ismail(3), Marwati Marwati(4), Wiwit Murdianto(5), Yuliani Yuliani(6)

(1) Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia
(2) Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia
(3) Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia
(4) Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia
(5) Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia
(6) Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia
(*) Corresponding Author

Abstract


Here is the first report of bioethanol production from giant cassava, a variety of cassava originated from East Kalimantan. Hydrolysis on freshly grated cassava with two different acids was studied separately. The experiment was conducted as a single factor experiment in Completely Randomized Design (CRD) with five treatments (0.0–1.0 M of acid solution), each replicated three times. Reducing sugars, unhydrolyzed substance (fibers), and hydrolysate clarity was determined. The experiment was continued by studying fermentation condition using factorial experiment (2 x 4) in CRD. The first factor was starter concentration (Saccharomyces cerevisiae, 5 and 10%) and the second factor was fermentation time (2–11 days). Biomass and alcohol content in fermentate were determined. The data were analyzed by ANOVA, excluding alcohol content that analyzed by the non-parametric statistic. Optimization using regression analysis showed that hydrolysis by HCl was more effective than H2SO4. Hydrolysis solution of 0.58 M HCl gave an optimum reducing sugar in hydrolysate (5.6%), which equivalent to a yield of 28.18%. Starter concentration affected significantly on biomass and alcohol content (p < 0.001) of fermentate, while fermentation time affected significantly only on alcohol content (p < 0.001). Optimum condition of cassava hydrolysate fermentation (100 mL) was using 5% yeast for 8 days, which gave a yield of 14.17% bioethanol.

Keywords


cassava; bioethanol; acid hydrolysis; S. cereviceae

Full Text:

Full Text PDF


References

[1] Renewable Fuels Association, 2016, Fueling a High Octane Future, 2016 Ethanol Industry Outlook, Renewable Fuel Association, Washington, DC, http://www.ethanolrfa.org.

[2] Future Market Insight, 2015, Ethanol Market - Global Industry Analysis, Size and Forecast, 2015 to 2025, http://www.futuremarketinsights.com/reports/ethanol-market, accessed on June 29, 2017.

[3] Smith, J.E., 2009, Biotechnology, 5th ed., Cambridge University Press, Cambridge, UK, 266.

[4] Taherzadeh, M.J., and Karimi, K., 2008, "Bioethanol: Market and Production Processes" in Biofuels Refining and Performance, A. Nag, ed., McGraw-Hill, New York, 69–106.

[5] Hoseinpour, H., Karimi, K., Zilouei, H., and Taherzadeh, M.J., 2010, Simultaneous pretreatment of lignocellulose and hydrolysis of starch in mixtures to sugars, BioResources, 5 (4), 2457–2469.

[6] Subashini, D., Ejilane, J., Radha, A., Jayasri, M.A., and Suthindhiran, K., 2011, Ethanol production from sago waste using Saccharomyces cerevisiae Vits-M1, Curr. Res. J. Biol. Sci., 3 (1), 42–51.

[7] Susanto, F., Candra, K., and Widjaja, A., 2015, Pra desain pabrik bioetanol dari nira batang sorghum, Jurnal Teknik ITS, 4 (2), B-86–88.

[8] Wijaya, I.M.A.S., Arthawan, I.G.K.A., and Sari, A.N., 2012, Potensi nira kelapa sebagai bahan baku bioetanol, Junal Bumi Lestari, 12 (1), 85–92.

[9] Tamunaidu, P., Matsui, N., Okimori, Y., and Saka, S., 2013, Nipa (Nypa fruticans) sap as a potential feedstock for ethanol production, Biomass Bioenergy, 52, 96–102.

[10] Kismurtono, M., 2012, Fed-batch alcoholic fermentation of palm juice (Arenga pinnata Merr) : Influence of the feeding rate on yeast, yield and productivity, Int. J. Eng. Technol., 2 (5), 795–799.

[11] Retnaningtyas, A.Y., Hidayat, R.R., Eidiyastuti, and Winardi, S., 2017, Studi awal proses fermentasi pada desain pabrik bioethanol dari molasses, Jurnal Teknik ITS, 6 (1), B-123–126.

[12] Susmiati, Y., Setyaningsih, D., and Sunarti, T.C., 2011, Rekayasa proses hidrolisis pati dan serat ubi kayu (Manihot utilissima) untuk produksi bioetanol, AGRITECH, 31 (4), 384–390.

[13] Harsojuwono, B.A., and Arnata, I.W., 2014, Optimasi pH dan suhu proses sakarifikasi fermentasi simultan dalam produksi bioethanol dari ubi jalar, Media Ilmiah Teknologi Pangan, 1, 50–57.

[14] Hossain, A.B.M.S., Ahmed,S.A., Alshammari, A.M., Mohd Adnan, A.F., Annuar, M.S.M., Mustafa, H., and Hammad, N., 2011, Bioethanol fuel production from rotten banana as an environmental waste management and sustainable energy, Afr. J. Microbiol. Res., 5 (6), 586–598.

[15] Kusmiyati, K., and Sulistiyono, A., 2014, Utilization of iles-iles and sorghum starch for bioethanol production, IJRED, 3 (2), 83–89.

[16] Farida, I., Syamsu, K., and Rahayuningsih, M., 2015, Direct ethanol production from breadfruit starch (Artocarpus communis Forst.) by engineered simultaneous saccharification and fermentation (ESSF) using microbes consortium, IJRED, 4 (1), 25–31.

[17] Ernes, A., Ratnawati, L., Wardani, A.K., and Kusnadi, J., 2014, Optimasi fermentasi bagas tebu oleh Zymomonas mobilis CP4 (NRRL B-14023) untuk produksi bioetanol, AGRITECH, 34, 247–256.

[18] Vaithanomsat, P., Apiwatanapiwat, W., Chumchuent, N., Kongtud, W., and Sundhrarajun, S., 2011, The potential of coconut husk utilization for bioethanol production, Kasetsart J. (Nat. Sci.), 45, 159–164.

[19] Amirta, R., Nafitri, S.I., Wulandari, R., Yuliansyah, Suwinarti, W., Candra, K.P., and Watanabe, T., 2016, Comparative characterization of Macaranga species collected from secondary forests in East Kalimantan for biorefinery of unutilized fast growing wood, Biodiversitas, 17 (1), 116–123.

[20] Erna, E., Said, I., and Abram, P.H., 2016, Bioetanol dari limbah kulit singkong (Manihot esculenta Crantz) melalui proses fermentasi, Jurnal Akademika Kimia, 5 (3), 121–126.

[21] Minarni, N., Ismuyanto, B., and Sutrisno, 2013, Pembuatan bioetanol dengan bantuan Saccharomyces cereviceae dari glukosa hasil hidrolisis biji durian (Durio zhibetinus), Jurnal Ilmu Kimia Universitas Brawijaya, 1, 36–42.

[22] Belal, E.B., 2013, Bioethanol production from rice straw residues, Brazilian J. Microbiol., 44 (1), 225–234.

[23] Candra, K.P., Sarwono, and Sarinah, 2011, Study on bioethanol production using red seaweed Eucheuma cottonii from Bontang sea water, J. Coast. Dev., 15 (1), 45–50.

[24] Schiener, P., Stanley, M.S., Black, K.D., and Green, D.H., 2016, Assessment of saccharification and fermentation of brown seaweeds to identify the seasonal effect on bioethanol production, J. Appl. Phycol., 28 (5), 3009–3020.

[25] Badan Pusat Statistik Provinsi Kalimantan Timur, 2016, Provinsi Kalimantan Timur Dalam Angka 2016, Badan Pusat Statistik Provinsi Kalimantan Timur, Samarinda, 267.

[26] Sejarah Singkong Gajah Ristono, 2015, Singkong Gajah-DR Indonesia, http://www.singkonggajahindonesia.com/2014/01/singkong-gajah-indonesia.html, accessed on June 29, 2017.

[27] Santoso, D., 2016, Cara budidaya Singkong Gajah agar hasilnya melimpah, https://kabartani.com/cara-budidaya-singkong-gajah-agar-hasilnya-melimpah.html, accessed on June 29, 2017.

[28] van Welzen, P.C., Nguyen, Q.D., and Chung, R.C.K., 1997, A revision of the introduced species of Manihot Miller (Euphorbiaceae) in Malesia, Rheedea, 7 (2), 77–85.

[29] Sulistyorini, L., 2014, Mukibat, sang penemu Singkong Mukibat, http://beritabaik.we.id/2014/1/02/mukibat-sang-penemu-singkong-mukibat, accessed on June 29, 2017.

[30] Hanson, D.R., and Ravishankara, A.R., 1993, Uptake of hydrochloric acid and hypochlorous acid onto sulfuric acid: Solubilities, diffusivities, and reaction, J. Phys. Chem., 97, 12309–12319.

[31] Badan Standardisasi Nasional, 1992, Cara Uji Gula, SNI 01-2892-1992, Badan Standardisasi Nasional, Jakarta, 17.

[32] Pirt, S.J., and Whelan, W.J., 1951, The determination of starch by acid hydrolysis, J. Sci. Food Agric., 2 (5), 224–228.

[33] Hafid, H.S., Nor ‘Aini, A.R., Mokhtar, M.N., Talib, A.T., Baharuddin, A.S., and Umi Kalsom, M.S., 2017, Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment, Waste Manage., 67, 95–105.

[34] Wei, B., Xu, X., Jin, Z., and Tian, Y., 2014, Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis, PLoS One, 9 (2), e86024.

[35] Artiyani, A., and Soedjono, E.S., 2011, Bioetanol dari limbah kulit singkong melalui proses hidrolisis dan fermentasi dengan Saccharomyces cerevisiae, Prosiding Seminar Nasional Manajemen Teknologi XIII, MMT-ITS, Surabaya, D1.1–8.

[36] Wardani, A.K., and Pertiwi, F.N.E., 2013, Produksi etanol dari tetes tebu oleh Saccharomyces cerevisiae pembentuk flok (NRRL-Y 265), AGRITECH, 33 (2), 131–139.

[37] Kaewkrajay, C., Dethoup, T., and Limtong, S., 2014, Ethanol production from cassava using a newly isolated thermotolerant yeast strain, ScienceAsia, 40, 268–277.

[38] Lareo, C., Ferrari, M.D., Guigou, M., Fajardo, L., Larnaudie, V., Ramírez, M.B., and Martínez-Garreiro, J., 2013, Evaluation of sweet potato for fuel bioethanol production: Hydrolysis and fermentation, Springerplus, 2, 493.

[39] Madukosiri, C.H., 2013, Comparative study of some varieties of cassava grown and consumed in Bayelsa State as prospective biofuel and energy food sources, Int. J. Agric. Policy Res., 1 (6), 156–165.

[40] Shafaghat, H., Najafpour, G.D., Rezaei, P.S., and Sharifzadeh-Baei, M., 2011, Ethanol production with natural carbon sources in batch and continuous fermentation using free and immobilized Saccharomyces cerevisiae, J. Sci. Ind. Res., 70 (2), 162–169.

[41] Arifwan, Erwin, and Kartika, R., 2016, Pembuatan bioetanol dari singkong karet (Manihot glaziovii Muell) dengan hidrolisis enzimatik dan difermentasi menggunakan Saccharomyces cerevisiae, Jurnal Atomik, 1, 10–12.

[42] Izmirlioglu, G., and Demirci, A., 2015, Enhanced bio-ethanol production from industrial potato waste by statistical medium optimization, Int. J. Mol. Sci., 16 (10), 24490–24505.

[43] Saelim, K., Dissara, Y., and H-Kittikun, A., 2008, Saccharification of cassava starch by Saccharomycopsis fibuligera YCY1 isolated from loog-pang (rice cake starter), Songklanakarin J. Sci. Technol., 30 (Suppl. 1), 65–71.



DOI: https://doi.org/10.22146/ijc.31141

Article Metrics

Abstract views : 4917 | views : 4517


Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.