One-Pot-Multicomponent Synthesis of 2,6-Diamino-4-arylpyridine-3,5-dicarbonitrile Derivatives Using Nanomagnetic Fe3O4@SiO2@ZnCl2

https://doi.org/10.22146/ijc.33062

Behrooz Maleki(1*), Hadi Natheghi(2), Vahid Sokhanvaran(3), Samaneh Sedigh Ashrafi(4)

(1) Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran
(2) Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran
(3) Faculty of Basic Sciences, University of Neyshabur, Neyshabur, Iran
(4) Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran
(*) Corresponding Author

Abstract


Nanomagnetic Fe3O4@SiO2@ZnCl2 was used as a simple, cost-effective, and reusable heterogeneous catalyst for the synthesis of 2,6-diamino-4-arylpyridine-3,5-dicarbonitriles by a one-pot-three-component condensation reaction of malononitrile, ammonium acetate, and aldehydes under solvent-free conditions at 110 °C. Simple and mild reaction conditions, facile preparation of the catalyst, the use of a cheap catalyst and easy workup and isolation are notable features of this method.

Keywords


2,6-diamino-4-arylpyridine-3,5-dicarbonitriles; nano magnetic Fe3O4@SiO2@ZnCl2; green chemistry; multi-component reaction

Full Text:

Full Text PDF


References

[1] Gupta, A.K., and Curtis, A.S.G., 2004, Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture, J. Mater. Sci. - Mater. Med., 15 4), 493–496.

[2] Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., and von Rechenberg, B., 2005, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 293 (1), 483–496.

[3] Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J., 2003, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys., 36 (13), 167–181.

[4] Wang, D., He, J., Rosenzweig, N., and Rosenzweig, Z., 2004, Superparamagnetic Fe2O3 beads−CdSe/ZnS quantum dots core−shell nanocomposite particles for cell separation, Nano Lett., 4 (3), 409–413.

[5] Xu, C., Xu, K., Gu, H., Zheng, R., Liu, H., Zhang, X., Guo, Z., and Xu, B., 2004, Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles, J. Am. Chem. Soc., 126 (32), 9938–9939.

[6] Perez, J.M., Simeone, F.J., Saeki, Y., Josephson, L., and Weissleder, R., 2003, Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media, J. Am. Chem. Soc., 125 (34), 10192–10193.

[7] Graham, D.L., Ferreira, H.A., and Freitas, P.P., 2004, Magnetoresistive-based biosensors and biochips, Trends Biotechnol., 22 (9), 455–462.

[8] Hiergeist, R., Andra, W., Buske, N., Hergt, R., Hilger, I., Richter, U., and Kaiser, W., 1999, Application of magnetite ferrofluids for hyperthermia, J. Magn. Magn. Mater., 201 (1-3), 420–422.

[9] Jordan, A., Scholz, R., Wust, P., Fähling, H., and Felix, R., 1999, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, J. Magn. Magn. Mater., 201 (1-3), 413-419.

[10] Shokouhimehr, M., Piao, Y., Kim, J., Jang, Y., and Hyeon, T., 2007, A magnetically recyclable nanocomposite catalyst for olefin epoxidation, Angew. Chem. Int. Ed., 46 (37), 7039–7043.

[11] Tayebee, R., Amini, M.M., Abdollahi, N., Aliakbari, A., Rabiee, S., and Ramshini, H., 2013, Magnetic inorganic-organic hybrid nanomaterial for the catalytic preparation of bis(indolyl)arylmethanes under solvent-free conditions: preparation and characterization of H5PW10V2O40/pyridino-Fe3O4 nanoparticles, Appl. Catal., A, 468 (5), 75–87.

[12] Rahmayeni, R., Arief, S., Stiadi, Y., Rizal, R., and Zulhadjri, Z., 2012, Synthesis of magnetic nanoparticles of TiO2-NiFe2O4: Characterization and photocatalytic activity on degradation of rhodamine B, Indones. J. Chem., 12 (3), 229–234.

[13] Reddy, L.S., Reddy, T.R., Mohan, R.B., Mahesh, A., Lingappa, Y., and Reddy, N.C.G., 2013, An efficient green multi-component reaction strategy for the synthesis of highly functionalized pyridines and evaluation of their antibacterial activities, Chem. Pharm. Bull., 61 (11), 1114–1120.

[14] Kankala, S., Pagadala, R., Maddila, S., Vasam, C.S., and Jonnalagadda, S.B., 2015, Silver(I)–N-heterocyclic carbene catalyzed multicomponent reactions: A facile synthesis of multisubstituted pyridines, RSC Adv., 5 (127), 105446–105452.

[15] Khalili, D., 2016, Graphene oxide: A reusable and metal-free carbocatalyst for the one-pot synthesis of 2-amino-3-cyanopyridines in water, Tetrahedron Lett., 57 (15), 1721–1723.

[16] Katritzky, A.R., Rees, C.W., and Scriven, E.F.V., 1996, Comprehensive Heterocyclic Chemistry II, 2nd ed., Pergamon, Oxford, UK.

[17] Gribble, G.W., and Joule, J., 2009, Progress in Heterocyclic Chemistry, vol. 21, Elsevier Science, New York.

[18] Rao, A.V.R., Reddy, G.R., and Rao, B.V., 1991, Stereoselective synthesis of theonelladins A-D, J. Org. Chem., 56 (14), 4545–4547.

[19] Jayasinghe, L., Jayasooriya, C.P., Hara, N., and Fujimoto, Y., 2003, A pyridine ring-containing ecdysteroid from Diploclisia glaucescens, Tetrahedron Lett., 44 (49), 8769–8771.

[20] Kubota, T., Nishi, T., Fukushi, E., Kawabata, J., Fromont, J., and Kobayashi, J., 2007, Nakinadine A, a novel bis-pyridine alkaloid with a β-amino acid moiety from sponge Amphimedon sp, Tetrahedron Lett., 48 (29), 4983–4985.

[21] Brian, P.M., and Musau, P., 2016, Synthesis, reactivity and stability of aryl halide protecting groups towards di-substituted pyridines, Indones. J. Chem., 16 (1), 53–58.

[22] Quintela, J., Peinador, C., Botana, L., Estevez, M., and Riguera, R., 1997, Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines, Bioorg. Med. Chem., 5 (8), 1543–1553.

[23] Kanbara, T., Kushida, T., Saito, N., Kuwajima, I., Kubota, K., and Yamamoto, T., 1992, Preparation, and properties of highly electron-accepting poly(pyrimidine-2,5-diyl), Chem. Lett., 21 (4), 583–586.

[24] Wang, H., Helgeson, R., Ma, B., and Wudl, F., 2000, Synthesis and optical properties of cross-conjugated bis(dimethylaminophenyl)pyridylvinylene derivatives, J. Org. Chem., 65 (18), 5862–5867.

[25] Petrov, V.F., Pavluchenko, A.I., and Smirnova, N.I., 1995, New liquid crystalline pyridine derivatives, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 265 (1), 47–53.

[26] Meyer, T.J., 1989, Chemical approaches to artificial photosynthesis, Acc. Chem. Res., 22 (5), 163–170.

[27] Cocco, M.T., Congiu, C., Lilliu, V., and Onnis, V., 2007, Synthesis and in vitro antitumoral activity of new 3,5-dicyanopyridine derivatives, Bioorg. Med. Chem., 15 (4), 1859–1867.

[28] Cocco, M.T., Congiu, C., Lilliu, V., and Onnis, V., 2005, Synthesis and antiproliferative activity of 2, 6-dibenzylamino-3, 5-dicyanopyridines on human cancer cell lines, Eur. J. Med. Chem., 40 (12), 1365–1372.

[29] Zhou, D., Lee, H., Rothfuss, J.M., Chen, D.L., Ponde, D.E., Welch, M.J., and Mach, R.H., 2009, Design and synthesis of 2-amino-4-methylpyridine analogues as inhibitors for inducible nitric oxide synthase and in vivo evaluation of [18F]6-(2-fluoropropyl)-4-methyl-pyridin-2-amine as a potential PET Tracer for Inducible nitric oxide synthase, J. Med. Chem., 52 (8), 2443–2453.

[30] Scott, N.M., Schareina, T., Tok, O., and Kempe, R., 2004, Lithium and potassium amides of sterically demanding aminopyridines, Eur. J. Inorg. Chem., 2004 (16), 3297–3304.

[31] Sarkar, S., Das, D.K., and Khan, A.T., 2014, Synthesis of fully-substituted pyridines and dihydropyridines in a highly chemoselective manner utilizing a multicomponent reaction (MCR) strategy, RSC Adv., 4 (96), 53752–53760.

[32] Raghukumar, V., Thirumalai, D., Ramakrishnan, V.T., Karunakara, V., and Ramamurthy, P., 2003, Synthesis of nicotinonitrile derivatives as a new class of NLO materials, Tetrahedron, 59 (21), 3761–3768.

[33] Huang, J., Zhou, J., Song, S., Song, H., Chen, Z., and Yi, W., 2015, A new and efficient ZnCl2-catalyzed synthesis and biological evaluation of novel 2-amino-3,5-dicyano-4-aryl-6-aryl-aminopyridines as potent antibacterial agents against Helicobacter pylori (HP), Tetrahedron, 71 (45), 8628–8636.

[34] Yang, J., Li, J., Hao, P., Qiu, F., Liu, M., Zhang, Q., and Shi, D., 2015, Synthesis, optical properties of multi donor-acceptor substituted AIE pyridine derivatives dyes and application for Au3+ detection in aqueous solution, Dyes Pigm., 116, 97–105.

[35] Mobinikhaledi, A., Asadbegi, S., and Bodaghifard, M.A., 2016, Convenient, multicomponent, one-pot synthesis of highly substituted pyridines under solvent-free conditions, Synth. Commun., 46 (19), 1605-1611.

[36] Murray, T.J., Zimmerman, S.C., and Kolotuchin, S.V., 1995, Synthesis of heterocyclic compounds containing three contiguous hydrogen bonding sites in all possible arrangements, Tetrahedron, 51 (2), 635–648.

[37] Samadi, A., Silva, D., Chioua, M., Carreiras, M.C., and Marco-Contelles, J., 2011, Microwave irradiation–assisted amination of 2-chloropyridine derivatives with amide solvents, Synth. Commun., 41 (19), 2859–2869.

[38] Harada, H., Watanuki, S., Takuwa, T., Kawaguchi, K., Okazaki, T., Hirano, Y., and Saitoh, C., 2003, Medicine comprising dicyanopyridine derivative, US20030232860A1.

[39] Mashaly, M.M., and Hammoudab, M., 1999, New simple and one-pot synthetic routes to polyfunctionally substituted pyridines; 1,4-dihydropyridazines and 4H-1,2-oxazine, Z. Naturforsch., B: Chem. Sci., 54 (9), 1205–1209.

[40] Maleki, B., Rezaei-Seresht, E., and Ebrahimi, Z., 2015, Friedlander synthesis of quinolines promoted by polymer-bound sulfonic acid, Org. Prep. Proced. Int., 47 (2), 149–160.

[41] Maleki, B., 2015, Solvent-free synthesis of 2,4,6-triarylpyridine derivatives promoted by 1,3-dibromo-5,5-dimethylhydantoin, Org. Prep. Proced. Int., 47 (2), 173–178.

[42] Maleki, B., Zonoz, F.M., and Akhlaghi, H.A., 2015, An efficient synthesis of symmetrical N,N′-alkylidene bis-amides catalyzed by a heteropolyacid, Org. Prep. Proced. Int., 47 (5), 361–367.

[43] Maleki, B., Kahoo, G.E., and Tayebee, R., 2015, One-pot synthesis of polysubstituted imidazoles catalyzed by an ionic liquid, Org. Prep. Proced. Int., 47 (6), 461–472.

[44] Maleki, B., Raei, M., Alinezhad, H., Tayebee, R., and Sedrpoushan, A., 2018, Chemoselective synthesis of tetraketones in water catalyzed by nanostructured diphosphate Na2CaP2O7, Org. Prep. Proced. Int., 50 (3), 288–300.

[45] Ren, Y.M., Shao, J.J., Wu, Z.C., and Xu, M.D., 2014, PEG1000-Based dicationic acidic ionic liquid catalyzed one-pot synthesis of 1,4-dihydropyridines via the Hantzsch reaction, Org. Prep. Proced. Int., 46 (6), 545–550.

[46] Mastitski, A., and Järv, J., 2014, One-pot synthesis of Fmoc-and Boc-protected aza-methionine precursors from 2-methylthioacetaldehyde dimethyl acetal, Org. Prep. Proced. Int., 46 (6), 559–564.

[47] Wang, M., Song, J.L., Zhao, S., and Wan, X., 2014, Synthesis of 3,4-dihydropyrimidin-2(1H)-ones using sodium bisulfate as a catalyst under solvent-free conditions, Org. Prep. Proced. Int., 46 (5), 457–462.

[48] Mobinikhaledi, A., Bodaghifard, M.A., and Asadbegi, S., 2016, A novel four- and pseudo-five-component reaction: Unexpected efficient one-pot synthesis of 4H-thiopyran derivatives, Mol. Diversity, 20 (2), 461–468.

[49] Maleki, B., Rooky, R., Rezaei-Seresht, E., and Tayebee, R., 2017, One-pot synthesis of bicyclic ortho-aminocarbonitrile and multisubstituted cyclohexa-1,3-dienamine derivatives, Org. Prep. Proced. Int., 49 (6), 557–567.

[50] Maleki, B., and Mofrad, A.V., 2017, Efficient synthesis of quinazoline derivatives catalyzed by flourinated alcohol, Res. Chem. Intermed., 43 (5), 3111–3120.

[51] Maleki, B., Eshghi, H., Barghamadi, M., Nasiri, N., Khojastehnezhad, A., Sedigh Ashrafi, S., and Pourshiani, O., 2016, Silica-coated magnetic NiFe2O4 nanoparticles-supported H3PW12O40; synthesis, preparation, and application as an efficient, magnetic, green catalyst for one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives, Res. Chem. Intermed., 42 (4), 3071–3093.

[52] Maleki, B., Baghayeri, M., Sheikh, S., Babaee, S., and Farhadi, S.,2017, One-pot synthesis of some 2-amino-4H-chromene derivatives using triethanolamine as a novel reusable organocatalyst under solvent-free conditions and its application in electrosynthesis of silver nanoparticles, Russ. J. Gen. Chem., 87 (87), 1064-1072.

[53] Veisi, H., Naeimi, A.R., Maleki, B., Sedigh Ashrafi, S., and Sedrpoushan, A.R., 2015, Synthesis of 5-alkylidene-2, 4-thiazolidinediones and rhodanines promoted by propylamino-functionalized nano-structured SBA-15, Org. Prep. Proced. Int., 47 (4), 309–315.

[54] Maleki, B., 2016, One-Pot Synthesis of some 2-amino-4H-benzo[g]chromenes, Org. Prep. Proced. Int., 48 (1), 81–87.

[55] Maleki, B., 2016, Green synthesis of bis-Coumarin and dihydropyrano[3,2-c]chromene derivatives catalyzed by o-benzenedisulfonimide, Org. Prep. Proced. Int., 48 (3), 303–318.

[56] Maleki, B., Akbarzadeh, E., and Babaee, S., 2015, New basic ionic liquid from ethan-1,2-diyl bis (hydrogen sulfate) and DBU (1,8-diazobicyclo[5.4.0]undec-7-ene) as an efficient catalyst for one-pot synthesis of xanthene derivatives, Dyes. Pigm., 123, 222–234.

[57] Soleimani, E., Namivandi, M.N., and Sepahvand, H., 2017, ZnCl2 supported on Fe3O4@SiO2 core–shell nanocatalyst for the synthesis of quinolines via Friedländer synthesis under solvent‐free condition, Appl. Organomet. Chem., 31 (2), 3566–3574.



DOI: https://doi.org/10.22146/ijc.33062

Article Metrics

Abstract views : 2544 | views : 2433


Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.