P84/Zeolite-Carbon Composite Mixed Matrix Membrane for CO2/CH4 Separation

https://doi.org/10.22146/ijc.35727

Triyanda Gunawan(1), Retno Puji Rahayu(2), Rika Wijiyanti(3), Wan Norharyati Wan Salleh(4), Nurul Widiastuti(5*)

(1) Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60117, Indonesia
(2) Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60117, Indonesia
(3) Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60117, Indonesia
(4) Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81319 UTM Johor Bahru, Malaysia
(5) Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60117, Indonesia
(*) Corresponding Author

Abstract


Mixed Matrix Membranes (MMMs) which consist of 0.3 wt.% Zeolite-Carbon Composite (ZCC) dispersed in BTDA-TDI/MDI (P84 co-polyimide) have been prepared through phase inversion method by using N-methyl-2-pyrrolidone (NMP) as a solvent. Membranes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Thermogravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR). Membrane performance was measured by a single gas permeation of CO2 and CH4. The maximum permeability of CO2 and CH4, which up to 12.67 and 6.03 Barrer, respectively. P84/ZCC mixed matrix membrane also showed a great enhancement in ideal selectivity of CO2/CH4 2.10 compared to the pure P84 co-polyimide membrane.


Keywords


mixed-matrix membrane; carbon-zeolite composite; gas separation

Full Text:

Full Text PDF


References

[1] Gong, H., Nguyen, T.H., Wang, R., and Bae, T.H., 2015, Separations of binary mixtures of CO2/CH4 and CO2/N2 with mixed-matrix membranes containing Zn(pyrz)2(SiF6) metal-organic framework, J. Membr. Sci., 495, 169–175.

[2] Saleman, T.L., Li, G.K., Rufford, T.E., Stanwix, P.L., Chan, K.I., Huang, S.H., and May, E.F., 2015, Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption, Chem. Eng. J., 281, 739–748.

[3] Ismail, N.H., Salleh, W.N.W., Sazali, N., and Ismail, A.F., 2018, Development and characterization of disk supported carbon membrane prepared by one-step coating-carbonization cycle, J. Ind. Eng. Chem., 57, 313–321.

[4] Salinas, O., Ma, X., Litwiller, E., and Pinnau, I., 2016, High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide, J. Membr. Sci., 500, 115–123.

[5] Liu, J., Han, C., McAdon, M., Goss, J., and Andrews, K., 2015, High throughput development of one carbon molecular sieve for many gas separations, Microporous Mesoporous Mater., 206, 207–216.

[6] Swaidan, R.J., Ma, X., and Pinnau, I., 2016, Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation, J. Membr. Sci., 520, 983–989.

[7] Favvas, E.P., Heliopoulos, N.S., Papageorgiou, S.K., Mitropoulos, A.C., Kapantaidakis, G.C., and Kanellopoulos, N.K., 2015, Helium and hydrogen selective carbon hollow fiber membranes: The effect of pyrolysis isothermal time, Sep. Purif. Technol., 142, 176–181.

[8] Favvas, E.P., Romanos, G.E., Katsaros, F.K., Stefanopoulos, K.L., Papageorgiou, S.K., Mitropoulos, A.C., and Kanellopoulos, N.K., 2016, Gas permeance properties of asymmetric carbon hollow fiber membranes at high feed pressures, J. Nat. Gas Sci. Eng., 31, 842–851.

[9] Zhang, B., Wu, Y., Lu, Y., Wang, T., Jian, X., and Qiu, J., 2015, Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide, J. Membr. Sci., 474, 114–121.

[10] Hosseini, S.S., Omidkhah, M.R., Zarringhalam Moghaddam, A., Pirouzfar, V., Krantz, W.B., and Tan, N.R., 2014, Enhancing the properties and gas separation performance of PBI-polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process, Sep. Purif. Technol., 122, 278–289.

[11] Sazali, N., Salleh, W.N.W., Nordin, N.A.H.M., and Ismail, A.F., 2015, Matrimid-based carbon tubular membrane: Effect of carbonization environment, J. Ind. Eng. Chem., 32, 167–171.

[12] Favvas, E.P., Nitodas, S.F., Stefopoulos, A.A., Papageorgiou, S.K., Stefanopoulos, K.L., and Mitropoulos, A.C., 2014, High purity multi-walled carbon nanotubes: Preparation, characterization and performance as filler materials in co-polyimide hollow fiber membranes, Sep. Purif. Technol., 122, 262–269.

[13] Salleh, W.N.W., and Ismail, A.F., 2015, Carbon membranes for gas separation processes: Recent progress and future perspective, J. Membr. Sci. Res., 1, 2–15.

[14] Zhang, B., Shi, Y., Wu, Y., Wang, T., and Qiu, J., 2014, Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation, Sep. Sci. Technol., 49 (2), 171–178.

[15] Ansaloni, L., and Deng, L., 2017, "Advances in Polymer-Inorganic Hybrids as Membrane Materials" in Recent Developments in Polymer Macro, Micro and Nano Blends, Eds., Visakh, P.M., Markovic, G., and Pasquini, D., Woodhead Publishing, UK, 163–206.

[16] Mohamad, M.B., Fong, Y.Y., and Shariff, A., 2016, Gas separation of carbon dioxide from methane using polysulfone membrane incorporated with zeolite-T, Procedia Eng., 148, 621–629.

[17] Ismail, N.M., Ismail, A.F., Mustafa, A., Zulhairun, A.K., and Nordin, N.A.H.M., 2016, Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay, J. Polym. Eng., 36 (1), 65–78.

[18] Ehsani, A., and Pakizeh, M., 2016, Synthesis, characterization and gas permeation study of ZIF-11/Pebax®2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng., 66, 414–423.

[19] Rafizah, W.A.W., and Ismail, A.F., 2008, Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve-polysulfone mixed matrix membrane, J. Membr. Sci., 307 (10), 53–61.

[20] Siriwardane, R.V., Shen, M.S., Fisher, E.P., and Losch, J., 2005, Adsorption of CO2 on zeolites at moderate temperatures, Energy Fuels, 19 (3), 1153–1159.

[21] Guan, C., Su, F., Zhao, X.S., and Wang, K., 2008, Methane storage in a template-synthesized carbon, Sep. Purif. Technol., 64 (1), 124–126.

[22] Guan, C., Zhang, X., Wang, K., and Yang, C., 2009, Investigation of H2 storage in a templated carbon derived from zeolite Y and PFA, Sep. Purif. Technol., 66 (3), 565–569.

[23] Guan, C., Wang, K., Yang, C., and Zhao, X.S., 2009, Characterization of a zeolite-templated carbon for H2 storage application, Microporous Mesoporous Mater., 118 (1-3), 503–507.

[24] Jomekian, A., Behbahani, R.M., Mohammadi, T., and Kargari, A., 2016, CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane, J. Nat. Gas Sci. Eng., 31, 562–574.

[25] Ismail, N.M., Ismail, A.F., and Mustafa, A., 2015, Sustainability in petrochemical industry: Mixed matrix membranes from polyethersulfone/cloisite15A® for the removal of carbon dioxide, Procedia CIRP, 26, 461–466.

[26] Kiadehi, A.D., Rahimpour, A., Jahanshahi, M., and Ghoreyshi, A.A., 2015, Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation, J. Ind. Eng. Chem., 22, 199–207.

[27] Zulhairun, A.K., Ismail, A.F., Matsuura, T., Abdullah, M.S., and Mustafa, A., 2014, Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation, Chem. Eng. J., 241, 495–503.

[28] Liang, C.Y., Uchytil, P., Petrychkovych, R., Lai, Y.C., Friess, K., Sipek, M., Reddy, M.M., and Suen, S.Y., 2012, A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes, Sep. Purif. Technol., 92, 57–63.

[29] Shen, Y., and Lua, A.C., 2012, Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)–silica nanocomposite membranes for gas separation, Chem. Eng. J., 188, 199–209.

[30] Bastani, D., Esmaeili, N., and Asadollahi, M., 2013, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, J. Ind. Eng. Chem., 19 (2), 375–393.

[31] Ba, C., Langer, J., and Economy, J., 2009, Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration, J. Membr. Sci., 327 (1-2), 49–58.

[32] Yong, H.H., Park, H.C., Kang, Y.S., Won, J., and Kim, W.N., 2001, Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine, J. Membr. Sci., 188 (2), 151–163.

[33] Favvas, E.P., Kouvelos, E.P., Romanos, G.E., Pilatos, G.I., Mitropoulos, A.C., and Kanellopoulos, N.K., 2008, Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor, J. Porous Mater., 15 (6), 625–633.



DOI: https://doi.org/10.22146/ijc.35727

Article Metrics

Abstract views : 4166 | views : 3601


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.