Study of the Mechanical Properties of Natural Rubber Composites with Synthetic Rubber Using Used Cooking Oil as a Softener

https://doi.org/10.22146/ijc.42343

Nasruddin Nasruddin(1*), Tri Susanto(2)

(1) Palembang Institute for Industrial Research and Standardization, Ministry of Industry, Jl. Perindustrian II No. 12 Km. 9, Palembang 30152, Indonesia
(2) Palembang Institute for Industrial Research and Standardization, Ministry of Industry, Jl. Perindustrian II No. 12 Km. 9, Palembang 30152, Indonesia
(*) Corresponding Author

Abstract


This research aims to study the mechanical properties of natural rubber composites with nitrile butadiene rubber and ethylene propylene diene monomer rubber. Composite fillers consisted of kaolin, and softener using used cooking oil. The study was carried out by the method of mastication, vulcanization, and maturation of the compound into rubber vulcanizates. The vulcanization and mastication process is carried out in the open mill. The maturation of the compound into rubber vulcanizates from the results of mastication and vulcanization was carried out using semi-automatic heat press and press at a temperature of 130 °C ± 2 °C for 17 min. Based on data from testing the mechanical properties of five samples from five formulas, the mechanical properties of composite rubber are affected by the ratio of natural rubber, synthetic rubber, kaolin, and used cooking oil as a softener. The difference in the results of vulcanizates rubber testing of natural rubber composites with synthetic rubber is not only influenced by the ratio of the composite, but also by the degree of cross-linking between the material molecules.


Keywords


properties; natural rubber; synthetic rubber; used cooking oil

Full Text:

Full Text PDF


References

[1] Masłowski, M., Miedzianowska, J., and Strzelec, K., 2019, Natural rubber composites filled with crop residues as an alternative to vulcanizates with common fillers, Polymers, 11 (6), 972.

[2] Sawere, B.T., and Igbuku, A.U., 2016, Evaluation of some mechanical properties of composites of natural rubber with egg shell and rice husk, Int. Res. J. Adv. Eng. Sci., 1 (3), 71–75.

[3] Koumoulos E.P., Trompeta, A.F., Santos, R.M., Martins, M., dos Santos, C.M., Iglesias, V., Böhm, R., Gong, G., Chiminelli, A., Verpoest, I., Kiekens, P., and Charitidis, C.A., 2019, Research and development in carbon fibers and advanced high-performance composites supply chain in Europe: A roadmap for challenges and the industrial uptake, J. Compos. Sci., 3, 86.

[4] Pandian, J.J., and Govindan, T., 2015, Comparative studies on the mechanical properties of natural rubber and natural rubber carbon black composites, IJETCSE, 13 (2), 48–52.

[5] Krishnan, Y., Chandran, S., Usman, N., Smitha, T.R., Parameswaran, P.S., and Prema, K.H., 2015, Processability, mechanical and magnetic studies on natural rubber- ferrite composites, Int. J. Chem. Stud., 3 (1), 15–22.

[6] Yahya, Y.S.R., Azura, A.R., and Ahmad, Z., 2011, Effect of curing systems on thermal degradation behaviour of natural rubber (SMR CV 60), J. Phys. Sci., 22 (2), 1–14.

[7] Linos, A., Berekaa, M.M., Reichelt, R., Keller, U., Schmitt, J., Flemming, H.C., Kroppenstedt, R.M., and Steinbüchel, A., 2000, Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: Microbial strategies and detailed surface analysis, Appl. Environ. Microbiol., 66 (4), 1639–1645.

[8] Mente, P., Motaung, T.E., and Hlangothi, S.P., 2016, Natural rubber and reclaimed rubber composites-A systematic review, Polym. Sci., 2 (1), 7.

[9] Aguele, F.O., Madufor, C.I., and Adekunle, K.F., 2014, Comparative study of physical properties of polymer composites reinforced with uncarbonised and carbonised coir, Open J. Polym. Chem., 4, 73–82.

[10] Egwaikhide, P.A., Akporhonor, E.E., and Okieimen, F.E., 2007, Effect of coconut fibre filler on the cure characteristics physico–mechanical and swelling properties of natural rubber vulcanisates, Int. J. Phys. Sci., 2 (2), 039–046.

[11] Pornprasit, R., Pornprasit, P., Boonma, P., and Natwichai, J., 2016, Determination of the mechanical properties of rubber by FT-NIR, J. Spectro., 2016, 4024783.

[12] Arayapranee, W., and Rempel, G.L., 2013, Effects of polarity on the filler-rubber interaction and properties of silica filled grafted natural rubber composites, J. Polym., 2013, 279529.

[13] Ajam, A.M., Al-Nesrawy, S.H., and Al-Maamori, M., 2016, Effect of reclaim rubber loading on the mechanical properties of SBR composites, Int. J. Chem. Sci., 14 (4), 2439–2449.

[14] Ismail, H., Ahmad, H.S., and Rashid, A.A., 2015, Fatigue, resilience, hardness, and swelling behaviour of natural rubber/recycled acrylonitrile-butadiene rubber (NR/NBRr) blends, Polym. Polym. Compos., 23 (8), 583–588.

[15] Kapgate, B.P., Das, C., Basu, D., Das, A., and Heinrich, G., 2013, Rubber composites based on silane-treated stöber silica and nitrile rubber: Interaction of treated silica with rubber matrix, J. Elastomers Plast., 47 (3), 248–261.

[16] Mousavi, M., Arjmand, O., Mostajabi, H., and Shooli, H., 2013, Investigation of physical, mechanical and biodegradation properties of nitrile butadiene rubber by natural polymers and nano-silica particles, AIJRFANS, 5 (1), 110–117.

[17] Suzuki, N., Ito, M., and Ono, S., 2005, Effects of rubber/filler interactions on the structural development and mechanical properties of NBR/Silica composites, J. Appl. Polym. Sci., 95 (1), 74–81.

[18] Singh, R., Shah, M.D., Jain, S.K., Shit, S.C., and Giri, R., 2013, Elastomeric composite: Mechanical and thermal properties of styrene butadiene rubber (SBR) based on carbon black and nanoclay, J. Inf. Knowl. Res. Mech. Eng., 02 (02), 515–521.

[19] Wu, W., and Tian, L., 2013, Formulation and morphology of kaolin-filled rubber composites, Appl. Clay Sci., 80-81, 93–97.

[20] Setyorini, I., and Yuniari, A., 2017, Determination of vulcanization rate constant, crosslink density, and free sulfur content on carbon black filled EPDM, MKKP, 33 (2), 93–98.

[21] Ugbaja, M.I., Onuoha, M.I., Ibeneme, U., Uzochukwu, M.I., Opara, H., and Mbada, I.N., 2016, Swelling and mechanical behaviour of natural rubber vulcanisate filled with leather wastes (buffing dust) and its modeling, Am. J. Appl. Sci. Res., 2 (2), 6–11.

[22] Okele, I.A., Mohammed, F., Agho, B.O., Marut, A.J., and Jekada, J.Z., 2015, Experimental study on particle size and filler loading reinforcement of sugarcane baggase on natural rubber compound, RRPL, 6 (4), 155–160.

[23] Aguele, F.O., and Madufor, C.I., 2012, Effects of carbonised coir on physical properties of natural rubber composites, Am. J. Polym. Sci., 2 (3), 28–34.

[24] Mohammed, M.R., and Hadi, A.N., 2012, Effect of egg shells powder on some mechanical and physical properties of natural rubber (NR), Iraqi J. Mech. Mater. Eng., 12 (3), 446–458.

[25] Momoh, F.P., Mamza, P.A.P., Gimba, C.E., and Nkeonye, P., 2016, Morphological trends of modified coconut fibre in natural rubber reinforcement, JETEAS, 7 (4), 167–172.

[26] Ahmed, K., Nizami., S.S., Raza, N.Z., and Shirin, K., 2012, Cure characteristics, mechanical and swelling properties of marble sludge filled EPDM modified chloroprene rubber blends, Adv. Mater. Phys. Chem., 2 (2), 90–97.

[27] Ahmed, K., Nizami, S.S., Raza, N.Z., and Habib, F., 2013, The effect of silica on the properties of marble sludge filled hybrid natural rubber composites, J. King Saud Univ. Sci., 25 (4), 331–339.

[28] Wang, J., and Chen, D., 2013, Mechanical properties of natural rubber nanocomposites filled with thermally treated attapulgite, J. Nanomater., 2013, 496584.

[29] Da Costa, H.M., Visconte, L.L.Y., Nunes, R.C.R., and Furtado, C.R.G., 2000, The effect of coupling agent and chemical treatment on rice husk ash-filled natural rubber composites, J. Appl. Polym. Sci., 76, 1019–1027.

[30] Samarth, N.B., and Mahanwar, P.A., 2015, Modified vegetable oil based additives as a future polymeric material-Review, Open J. Org. Polym. Mater., 5, 1–22.

[31] Song, F., Xia, H., Jia, P., Zhang, M., Hu, L., and Zhou, Y., 2018, The effects of epoxidized acrylated castor oil (EACO) on soft poly (vinyl chloride) films as a main plasticizer, Pol. J. Chem. Technol., 20, (4), 13–19.

[32] Pechurai, W., Chiangta, W., and Tharuen, P., 2015, Effect of vegetable oils as processing aids in SBR compounds, Macromol. Symp., 354 (1), 191–196.

[33] Puspitasari, S., and Cifriadi, A., 2014, Pembuatan bahan pelunak alami untuk kompon karet melalui reaksi hidrogenasi minyak jarak castor, Indonesian J. Nat. Rubb. Res., 32 (1), 56–64.

[34] Nasir, A.N.M., Romli, A.Z., Wahab, M.A., and Abidin, M.H., 2013, Effect of Epoxidized palm oil (EPO) on tensile properties and density of rubber compounding, Adv. Mater. Res., 812, 216–220.

[35] Syamin, Y.M., Azemi, S., and Dzaraini, K., 2017, Evaluation of cooking oil as processing additive for natural rubber, ASEAN J. Sci. Technol. Dev., 34 (1), 17–25.

[36] Puspitasari, S., and Cifriadi, A., 2013, Karakterisasi proses vulkanisasi minyak jarak kastor dan evaluasi mutu hasil faktis cokelat, Buletin RISTRI, 4 (2), 99–108.

[37] Song, S.H., 2018, The effect of palm oil-based hybrid oils as green multifunctional oils on the properties of elastomer composites, Polymers, 10 (9), 1045.

[38] Nasruddin, and Susanto, T., 2018, Thermal, morphological and physic-mechanical properties of natural rubber-CaCO3 composites using jatropha oil as softener, MATEC Web Conf., 156, 05016

[39] Aprem, A.S., Thomas, S., Joseph, K., Barkoula, N.M., and Kocsis, J.K., 2003, Sulphur vulcanisation of styrene butadiene rubber using new binary accelerator systems, J. Elastomers Plast., 35 (1), 29–55.

[40] Joseph, R., Alex, R., Vinod, V.S., Premalatha, C.K., and Kuriakose, B., 2003, Studies on epoxidized rubber seed oil as plasticizer for acrylonitrile butadiene rubber, J. Appl. Polym. Sci., 89 (3), 668–673.

[41] Ramdja, A.F., Febrina, L., and Krisdianto, D., 2010, Pemurnian minyak jelantah menggunakan ampas tebu sebagai adsorben, J. Teknik Kimia., 17 (1), 7–14.

[42] Johns, J., and Rao, V., 2009, Mechanical properties and swelling behavior of cross-linked natural rubber/chitosan blends, Int. J. Polym. Anal. Charact., 14 (6), 508–526.

[43] Mohamad, N., Sharafina, Z.N., Ab Maulod, H.E., Yuhazri, M.Y., and Jeefferie, A.R., 2013, Morphological and mechanical properties of polypropylene/epoxidized natural rubber thermoplastic vulcanizates treated with maleic anhydride-grafted polypropylene, IJAME, 8, 1305–1315.

[44] Egwaikhide, A.P., Okieimen, F.E., and Lawal, U., 2013, Rheological and mechanical properties of natural rubber compounds filled with carbonized palm kernel husk and carbon black (N330), Sci. J. Chem., 1 (5), 50–55.

[45] Dahham, O.S., Noriman, N.Z., Kahar, A.W.M., Ismail, H., and Sam, S.T., 2015, The Effect of sawdust loading as natural short fiber on NBR/NRL-G compounds, J. Appl. Sci. Agric., 10 (5), 33–39.

[46] Chaturvedi, A., Chaturvedi, S., Rajkumar, K., and Patil, A.S., 2016, Experimental study of natural rubber based shock attenuation device, Int. J. Eng. Stud., 8 (1), 63–71.

[47] Zhang, H., Li, Y., Shou, J.Q., Zhang, Z.Y., Zhao, G.Z., and Liu, Y.Q., 2015, Effect of curing temperature on properties of semi-efficient vulcanized natural rubber, J. Elastomers Plast., 48 (4), 331–339.

[48] Valentini, L., Bon, S.B., Lopez-Manchado, M.A., Verdejo, R., Pappalardo, L., Bolognini, A., Alvino, A., Borsini, S., Berardo, A., and Pugno, N.M., 2016, Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites, Compos. Sci. Technol., 128, 123–130.

[49] Karaağaç, B., İnal, M., and Deniz, V., 2011, Predicting optimum cure time of rubber compounds by means of ANFIS, Mater. Des., 35, 833–838.

[50] Alemdar, A., and Sain, M., 2008, Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties, Compos. Sci. Technol., 68 (2), 557–565.

[51] Chuayjuljit, S., Imvittaya, A., Na-Ranong, N., and Potiyaraj, P., 2002, Effects of particle size and amount of carbon black and calcium carbonate on curing characteristics and dynamic mechanical properties of natural rubber, JMMM, 12 (1), 51–57.

[52] Setyowati, P., Rahayu, S., and Supriyanto, 2004, Karakteristik karet ebonit yang dibuat dengan berbagai variasi rasio RSS I/Riklim dan jumlah belerang, MKKP, 20 (1), 10–14.

[53] Norhafizah, Z., Noriman, N.Z., Kamarudin, H., Sam, S.T., Ismail, H., Omar, M.F., Ruzaidi, C.M., and Afiratul, A.A., 2015, Properties of ethylene propylene diene monomer/recycled acrylonitrile-butadiene rubber blends (EPDM/rNBR): Effect of the addition of bamboo fillers, Appl. Mech. Mater., 815, 19–23.

[54] Delchev, N., Malinova, P., Mihaylov, M., and Dishovsky, N., 2014, Effect of the modified solid product from waste tyres pyrolysis on the properties of styrene-butadiene rubber based composites, J. Chem. Technol. Metall., 49 (6) 525–534.

[55] Neuhaus, C., Lion, A., Johlitz, M., Heuler, P., Barkhoff, M., and Duisen, F., 2017, Fatigue behavior of an elastomer under consideration of ageing effects, Int. J. Fatigue, 104, 72–80.

[56] Kim, Y.S., Kim, Y.T., and Jeon, E.S., 2019, Optimization of accelerator mixing ratio for EPDM rubber grommet to improve mountability using mixture design, Appl. Sci., 9, 2640.

[57] Hashim, F.S., Almaamori, M.H., and Hamood, F.J., 2016, Effect of silica on the mechanical properties of rubber reclaim composite, Int. J. Chem Tech Res., 9 (4), 325–333.

[58] El-Sabbagh, S.H., Ismail, M.N., and Yehia, A.A., 2001, Effect of the curing systems on the fatigue behavior of NR vulcanizates, J. Elastomers Plast., 33, 263–281.

[59] Ateia, E.E., El-Nashar, D.E., Hassan, H.H., and Abd El-Aziz, A.K., 2017, A comparative study of the cure characteristics, mechanical properties and abrasion resistance of silica and carbon black filled NBR/SBR blends, Egypt. J. Chem., 60 (5), 769–777.



DOI: https://doi.org/10.22146/ijc.42343

Article Metrics

Abstract views : 7303 | views : 13259


Copyright (c) 2020 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.