Further Analysis of Burkholderia pseudomallei MF2 and Identification of Putative Dehalogenase Gene by PCR

https://doi.org/10.22146/ijc.43262

Mohamed Faraj Edbeib(1), Roswanira Abdul Wahab(2), Fahrul Zaman Huyop(3*), Hasan Murat Aksoy(4), Yilmaz Kaya(5)

(1) Department of Animal Production, Faculty of Agriculture, Baniwalid University, Libya
(2) Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
(3) Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
(4) Department of Plant Protection, Agricultural Faculty, Ondokuz Mayis University, Turkey
(5) Department of Agricultural Biotechnology, Agricultural Faculty, Ondokuz Mayis University, Turkey
(*) Corresponding Author

Abstract


Halogenated organic compounds are extensively and widely used as pesticides, herbicides, and antibiotics that contribute to the pollution. This research was aimed to further analyze and characterize a bacterium that has the ability to utilize 2,2-dichloropropionic acid (2,2-DCP) as a model to study dehalogenase enzyme production.  Microscopic observation, biochemical tests and PCR technique were carried out in order to characterize the isolated bacterium. Strain MF2 showed its ability to grow on 10 mM 2,2-DCP liquid minimal medium with doubling time of 13 h with maximum chloride ion released of 19.8 molCl/mL. The 16S rDNA analysis suggested that strain MF2 belongs to the genus Burkholderia. This was supported by the microscopic observation and biochemical tests. Dehalogenase gene was observed when using only primers dehIfor1 and dehIrev2 derived from group I deh PCR primer sequences, whereas no amplification using dhlB-314-forward and dhlB-637-reverse (group II dehalogenase) and haloacetate dehalogenase (H2-1157-forward and H2-1662-reverse) PCR primer sequences. The results suggested that, possibly, dehalogenase from MF2 was related to group I deh. In conclusion, strain MF2 showed the ability to utilize 2,2-DCP as sole source of carbon and energy. Further analysis revealed the MF2 strain consisted of dehalogenase gene that could be used for degradation of man-made halogenated compounds present in the environment. Using existing dehalogenase PCR primers, it was possible to amplify the dehalogenase genes sequence.


Keywords


Burkholderia pseudomallei; 2,2-dichloropropionate; biodegradation; dehalogenase gene; 16S rDNA gene

Full Text:

Full Text PDF


References

[1] Rieger, P.G., Meier, H.M., Gerle, M., Vogt, U., Groth, T., and Knackmuss, H.J., 2002, Xenobiotics in the environment: Present and future strategies to obviate the problem of biological persistence, J. Biotechnol., 94 (1), 101–123.

[2] van Pée, K.H., and Unversucht, S., 2003, Biological dehalogenation and halogenation reactions, Chemosphere, 52 (2), 299–312.

[3] Karpouzas, D.G., and Singh, B.K., 2006, Microbial degradation of organophosphorus xenobiotics: Metabolic pathways and molecular basis, Adv. Microb. Physiol., 51, 119–225.

[4] Huyop, F., Yusn, T.Y., Ismail, M., Wahab, R.A., and Cooper, R.A., 2004, Overexpression and characterisation of non-stereospecific haloacid dehalogenase E (DehE) of Rhizobium sp, Asia Pac. J. Mol. Biol. Biotechnol., 12 (1-2), 15–20.

[5] Huyop, F., Jing, N.H., and Cooper, R.A., 2008, Overexpression, purification and analysis of dehalogenase D of Rhizobium sp, Can. J. Pure Appl. Sci., 2 (2), 389–392.

[6] Edbeib, M.F., Wahab, R.A., and Huyop, F., 2016, Characterization of an α-haloalkanoic acid–degrading Pseudomonas aeruginosa MX1 isolated from contaminated seawater, Biorem. J., 20 (2), 89–97.

[7] Leasure, J.K., 1964, Metabolism of herbicides, halogenated aliphatic acids, J. Agric. Food Chem., 12 (1), 40–43.

[8] Sinha, S., Chattopadhyay, P., Pan, I., Chatterjee, S., Chanda, P., Bandyopadhyay, D., Das, K., and Sen, S.K., 2009, Microbial transformation of xenobiotics for environmental bioremediation, Afr. J. Biotechnol., 8 (22), 6016–6027.

[9] Edbeib, M.F., Wahab, R.A., Kaya, Y., and Huyop, F., 2017, In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölü Lake, Turkey: Insights into a hypersaline-adapted dehalogenase, Ann. Microbiol., 67 (5), 371–382.

[10] Schwarze, R., Brokamp, A., and Schmidt, R.J.F., 1997, Isolation and characterization of dehalogenases from 2,2-dichloropropionate-degrading soil bacteria, Curr. Microbiol., 34 (2), 103–109.

[11] Slater, J.H., Bull, A.T., and Hardman, D.J., 1996, Microbial dehalogenation of halogenated alkanoic acids, alcohols and alkanes, Adv. Microb. Physiol., 38, 133–176.

[12] Hill, K.E., Marchesi, J.R., and Weightman, A.J., 1999, Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families, J. Bacteriol., 181 (8), 2535–2547.

[13] Kawasaki, H., Tsuda, K., Matsushita, I., and Tonomura, K., 1992, Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid from Moraxella sp. strain B, J. Gen. Microbiol., 138 (7), 1317–1323.

[14] Adamu, A., Wahab, R.A., Shamsir, M.S., Aliyu, F., and Huyop, F., 2017, Deciphering the catalytic amino acid residues of l-2-haloacid dehalogenase (DehL) from Rhizobium sp. RC1: An in silico analysis, Comput. Biol. Chem., 70, 125–132.

[15] Adamu, A., Shamsir, M.S., Wahab, R.A., Parvizpour, S., and Huyop, F., 2017, Multi-template homology-based structural model of L-2-haloacid dehalogenase (DehL) from Rhizobium sp. RC1, J. Biomol. Struct. Dyn., 35 (15), 3285–3296.

[16] Nemati, M., Abdulghader, H.F., Gicana, R.G., Lamis, R.J.S., Ibrahim, N., Hamid, A.A.A., and Huyop, F.Z., 2013, Identification of putative Cof-like hydrolase associated with dehalogenase in Enterobacter cloacae MN1 isolated from the contaminated sea-side area of the Philippines, Malays. J. Microbiol., 9 (3), 253–259.

[17] Hamid, A.A.A., Hamdan, S., Ariffin, S.H., and Huyop, F., 2010, Molecular prediction of dehalogenase producing microorganism using 16S rDNA analysis of 2,2-dichloropropionate (Dalapon) degrading bacterium isolated from volcanic soil, J. Biol. Sci., 10 (3), 190–199.

[18] Bergey, D.H., and Holt, J.G., 1994, Bergey’s Manual of Determinative Bacteriology, 9th Ed., Williams and Wilkins, Baltimore.

[19] Alomar, D., Hamid, A.A.A., Khosrowabadi, E., Gicana, R.G., Lamis, R.J., Huyop, F., and Tengku Abdul Hamid, T.H., 2014, Molecular characterization of monochloroacetate-degrading Arthrobacter sp. strain D2 isolated from Universiti Teknologi Malaysia agricultural area, Biorem. J., 18 (1), 12–19.

[20] Bergmann, J., and Sanik, J.J., 1957, Determination of trace amounts of chlorine in naphtha, Anal. Chem., 29 (2), 241–243.

[21] Fulton, C.K., and Cooper, R.A., 2005, Catabolism of sulfamate by Mycobacterium sp. CF1, Environ. Microbiol., 7 (3), 378–381.

[22] van der Ploeg, J., van Hall, G., and Janssen, D.B., 1991, Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene, J. Bacteriol., 173 (24), 7925–7933.

[23] Fortin, N., Fulthorpe, R.R., Allen, D.G., and Greer, C.W., 1998, Molecular analysis of bacterial isolates and total community DNA from kraft pulp mill effluent treatment systems, Can. J. Microbiol., 44 (6), 537–546.

[24] Dance, D.A.B., Limmathurotsakul, D., and Currie, B.J., 2017, Burkholderia pseudomallei: Challenges for the clinical microbiology laboratory—A response from the front line, J. Clin. Microbiol., 55 (3), 980–982.

[25] Vial, L., Chapalain, A., Groleau, M.C., and Déziel, E., 2011, The various lifestyles of the Burkholderia cepacia complex species: A tribute to adaptation, Environ. Microbiol., 13 (1), 1–12.

[26] Coenye, T., and Andamme, P., 2003, Diversity and significance of Burkholderia species occupying diverse ecological niches, Environ. Microbiol., 5 (9), 719–729.

[27] Watanabe, K., Teramoto, M., Futamata, H., and Harayama, S., 1998, Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge, Appl. Environ. Microbiol., 64 (11), 4396–4402.

[28] Watanabe, K., and Baker, P.W., 2000, Environmentally relevant microorganisms, J. Biosci. Bioeng., 89 (1), 1–11.

[29] Abel, E., Ibrahim, N., and Huyop, F., 2012, Identification of Serratia marcescens SE1 and determination of its herbicide 2,2-dichloropropionate (2,2-DCP) degradation potential, Malays. J. Microbiol., 8 (4), 259–264.

[30] Allison, N., Skinner, A.J., and Cooper, R.A., 1983, The dehalogenases of a 2,2-dichloropropionate-degrading bacterium, J. Gen. Microbiol., 129 (5), 1283–1293.

[31] Abel, E., Ibrahim, N., and Huyop, F., 2012, Identification of Serratia marcescens SE1 and determination of its herbicide 2,2-dichloropropionate (2,2-DCP) degradation potential, Malays. J. Microbiol., 8 (4), 259–264.

[32] Abel, E., Pakingking Jr., R.V., Pagador, G., Wint, M.T., and Huyop, F., 2012, Characteristics of dehalogenase from bacteria isolated from the gut of pond-reared rohu (Labeo rohita) Juveniles in Myanmar, Adv. Biosci. Biotechnol., 3, 353–361.

[33] Jing, N.H., Wahab, R.A., Hamdan, S., and Huyop, F., 2010, Cloning and DNA sequence analysis of the alhoalkanoic permease uptake gene from Rhizobium sp. RC 1, Biotechnology, 9 (3), 319–325.

[34] Su, X., and Tsang, J.S.H., 2013, Existence of a robust haloacid transport system in a Burkholderia species bacterium, Biochim. Biophys. Acta, Biomembr., 1828 (2), 187–192.

[35] Musa, M.A., Wahab, R.A., and Huyop, F., 2018, Homology modelling and in silico substrate-binding analysis of a Rhizobium sp. RC1 haloalkanoic acid permease, Biotechnol. Biotechnol. Equip., 32 (2), 339–349.

[36] Bagherbaigi, S., Gicana, R.G., Lamis, R.J., Nemati, M., and Huyop, F., 2013, Characterisation of Arthrobacter sp. S1 that can degrade α and β-haloalkanoic acids isolated from contaminated soil, Ann. Microbiol., 63 (4), 1363–1369.

[37] Cairns, S.S., Cornish, A., and Cooper, R.A., 1996, Cloning, sequencing and expression in Escherichia coli of two Rhizobium sp. genes encoding haloalkanoate dehalogenases of opposite stereospecificity, Eur. J. Biochem., 235 (3), 744–749.

[38] Hamid, A.A.A., Wong, E.L., Joyce-Tan, K.H., Shamsir, M.S., Tengku Abdul Hamid, T.H., and Huyop, F., 2013, Molecular modelling and functional studies of the non-stereospecific α-haloalkanoic acid dehalogenase (DehE) from Rhizobium sp. RC1 and its association with 3-chloropropionic acid (β-chlorinated aliphatic acid), Biotechnol. Biotechnol. Equip., 27 (2), 3725–3736.

[39] Batumalaie, K., Edbeib, M.F., Mahat, N.A., Huyop, F., and Wahab, R.A., 2018, In silico and empirical approaches toward understanding the structural adaptation of the alkaline-stable lipase KV1 from Acinetobacter haemolyticus, J. Biomol. Struct. Dyn., 36 (12), 3077–3093.



DOI: https://doi.org/10.22146/ijc.43262

Article Metrics

Abstract views : 2302 | views : 1983


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.