Cellulose Acetate of Rice Husk Blend Membranes: Preparation, Morphology and Application

https://doi.org/10.22146/ijc.47185

Meri Suhartini(1*), Engela Evy Ernawati(2), Anisa Roshanova(3), Haryono Haryono(4), June Mellawati(5)

(1) CIRA, National Nuclear Energy Agency, Lebak Bulus Raya No. 49, Pasar Jumat, PO Box 7002, JKSKL, South of Jakarta, Jakarta 12070, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor 45363, West Java, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor 45363, West Java, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor 45363, West Java, Indonesia
(5) CTRSM, National Nuclear Energy Agency, Lebak Bulus Raya No.49, Pasar Jumat, PO Box 7043 JKSKL, South of Jakarta, Jakarta 12070, Indonesia
(*) Corresponding Author

Abstract


Cellulose acetate blend membranes in this study synthesized from cellulose acetate (CA) of rice husk and NaA zeolites (Z) with N,N’-Methylene bis acrylamide (MBA) as cross-linker agent and gamma-rays from cobalt-60 source as a reaction initiator. Application of the membrane was carried out to increase the concentration of vetiverol in vetiver oil. The steps in this study were isolation the cellulose rice husk with alkali treatment, delignification, acetylation, preparation the cellulose acetate-NaA zeolites NaA-membrane by inverse phase technique, addition N,N’-Methylene bis acrylamide, and irradiation by gamma-rays. Swelling degree, crosslinking yield, tensile strength, membrane performance, FTIR, and SEM analysis were observed. The results obtained that the optimal irradiation dose for synthesis CA-Z-MBA membrane is 20 kGy. The CA-Z-MBA membrane has swelling degree of 4.44%, the tensile strength of 656.40 kg/cm2, and crosslinking yield of 6.61%. Performance of the CA-Z-MBA membrane reached the flux of 60.58 g/m2.h, and permeate concentration (CP) of 11.67%, the CP increase 5 times from 2.40% to 11.67%.

Keywords


cellulose acetate membrane; NaA zeolites; gamma-rays; vetiver oil

Full Text:

Full Text PDF


References

[1] Kusworo, T.D., Soetrisnanto, D., Widayat, Budiyono, and Utomo, D.P., 2018, Study of polymeric, membranes potential for eugenol purification from crude clove leaf oil, ASEAN J. Chem. Eng., 18 (2), 81–92.

[2] Etemadi, H., Yegani, R., Seyfollahi, M., and Rabiee, M., 2018, Synthesis, characterization, and anti-fouling properties of cellulose acetate/polyethylene glycol-grafted nanodiamond nano composite membranes for humic acid removal from contaminated water, Iran. Polym. J., 27 (6), 381–393.

[3] Das, A.M., Ali, A.A., and Hazarika, M.P., 2014, Synthesis and characterization of cellulose acetate from rice husk: Eco-friendly condition, Carbohydr. Polym., 112, 342–349.

[4] Zheng, P.Y., Zhang, W.H., Li, C., Wang, N.X., Li, J., Qin, Z.P., and An, Q.F., 2019, Efficient bio-ethanol recovery by non-contact vapor permeation process using membranes with tailored pore size and hydrophobicity, Chem. Eng. Sci., 207, 448–455.

[5] Ernawati, E., 2014, Pembuatan membran selulosa asetat termodifikasi zeolit alam Lampung untuk pemisahan etanol-air secara pervaporasi, Chimica at Natura Acta, 2 (1), 101–104.

[6] Fu, Y.J., Lai, C.L., Chen, J.T., Liu, C.T., Huang, S.H., Hung, W.S., Hu, C.C., and Lee, K.R., 2014, Hydrophobic composite membranes for separating of water-alcohol mixture by pervaporation at high temperature, Chem. Eng. Sci., 111, 203–210.

[7] Jyoti, G., Keshav, A., and Anandkumar, J., 2015, Review on pervaporation: Theory, membrane performance, and application to intensification of esterification reaction, J. Eng., 2015, 927068.

[8] Sarialp, G., 2012, Dehydration of aqueous aprotic solvent mixtures by pervaporation, Thesis, Department of Engineering, Middle East Technical University, Turkey.

[9] Iryani, D.A., Wulandari, N.F., Cindradewi, A.W., Ginting, S., Ernawati, E., and Hasanudin, E., 2018, Lampung natural zeolite filled cellulose acetate membrane for pervaporation of ethanol-water mixtures, IOP Conf. Ser.: Earth Environ. Sci., 141, 012013.

[10] Wee, S.L., Tye, C.T., and Bhatia, S., 2008, Membrane separation process – Pervaporation through zeolite membrane, Sep. Purif. Technol., 63 (3), 500–516.

[11] Suhartini, M., and Ernawati, E.E., 2014, Karakteristik kopolimer radiasi selulosa asetat-ko-glutaraldehida, Jusami, 15 (4), 214–220.

[12] Becker, W., and Schmidt-Naake, G., 2002, Proton exchange membranes by irradiation induced grafting of styrene onto FEP and ETFE: Influences of the crosslinker N,N‐methylene‐bis‐acrylamide, Chem. Eng. Technol., 25 (4), 373–377.

[13] Kristóf, T., 2017, Selective removal of hydrogen sulphide from industrial gas mixture using zeolite NaA, Hung. J. Ind. Chem., 45 (1), 9–15.

[14] Mulyono, E., Sumangat, D., and Hidayat, T., 2012, Peningkatan mutu dan efisiensi produksi minyak akar wangi melalui teknologi penyulingan dengan tekanan uap bertahap, Buletin Teknologi Pascapanen Pertanian, 8 (1), 35–47.

[15] Sluiter, A., Hames, B.V., Ruiz, R., Scarlata, C., Sluiter, J., and Templeton, D., 2008, Determination of ash in biomass – Laboratory analytical procedure (LAP), Technical Report NREL/TP-510-42622, National Renewable Energy Laboratory, U.S. Department of Energy, Colorado, USA.

[16] Gierszewska-Drużyńska, M., and Ostrowska-Czubenko, J., 2015, Structural and swelling properties of hydrogel membranes based on chitosan crosslinked with glutaraldehyde and sodium tripolyphosphate, Prog. Chem. Appl. Chitin Deriv., 20, 43–53.

[17] Suleman, M.S., Lau, K.K., and Yeong, Y.F., 2016, Characterization and performance evaluation of PDMS/PSF membrane for CO2/CH4 separation under the effect of swelling, Procedia Eng., 148, 176–183.

[18] Rosa, S.M.L., Rehman, N., de Miranda, M.I.G., Nachtigall, S.M.B., and Bica, C.I.D., 2012, Chlorine-free extraction of cellulose from rice husk and whisker isolation, Carbohydr. Polym., 87 (2), 1131–1138.

[19] Bazargan, A., Gebreegziabher, T., Hui, C.W., and McKay, G., 2014, The Effect of alkali treatment on rice husk moisture content and drying kinetics, Biomass Bioenergy, 70, 468–473.

[20] Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., and Jeelani, S., 2015, Extraction and characterization of lignin from different biomass resources, J. Mater. Res. Technol., 4 (1), 26–32.

[21] Ab Ghani, M.H., Royan, N.R.R., Kang, S.W., Sulong, A.B., and Ahmad, S., 2015, Effect of alkaline treated rice husk on the mechanical and morphological properties of recycled HDPE/RH Composite, J. Appl. Sci. Agric., 10 (5), 138–144.

[22] Wang, Z., Li, J., Barforf, J.P., Hellgrandt, K., and McKay, G., 2016, A comparison of chemical treatment methods for the preparation of rice husk cellulosic fibers, Int. J. Environ. Agric. Res., 2 (1), 67–77.

[23] Muñoz-García, R.O., Hernandez, M.E., Ortiz, G.G., Fernández, V.V.A., Arellano, M.R., and Sánchez-Díaz, J.C., 2015, A novel polyacrylamide-based hydrogel crosslinked with cellulose acetate and prepared by precipitation polymerization, Quím. Nova, 38 (8), 1031–1036.

[24] Hunger, K., Schmeling, N., Jeazet, H.B.T., Janiak, C., Staudt, C., and Kleinermanns, K., 2012, Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation, Membranes, 2 (4), 727–763.



DOI: https://doi.org/10.22146/ijc.47185

Article Metrics

Abstract views : 3500 | views : 3028


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.