Prediction of Rashba Effect on Two-dimensional MX Monochalcogenides (M = Ge, Sn and X = S, Se, Te) with Buckled Square Lattice

https://doi.org/10.22146/ijc.49331

Ibnu Jihad(1*), Juhri Hendrawan(2), Adam Sukma Putra(3), Kuwat Triyana(4), Moh. Adhib Ulil Absor(5)

(1) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(2) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(3) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(4) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(5) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


The Rashba splitting are found in the buckled square lattice. Here, by applying fully relativistic density-functional theory (DFT) calculation, we confirm the existence of the Rashba splitting in the conduction band minimum of various two-dimensional MX monochalcogenides (M = Ge, Sn and X = S, Se, Te) exhibiting a pair inplane Rashba rotation of the spin textures. A strong correlation has also been found between the size of the Rashba parameter and the atomic number of chalcogen atom for Γ and M point in the first Brillouin zone. Our investigation clarifies that the buckled square lattice are promising for inducing the substantial Rashba splitting suggesting that the present system is promising for spintronics device.

Keywords


Ge monochalcogenides; Sn monochalcogenides; DFT method; spintronics; square lattice; Rashba effect; spin textures

Full Text:

Full Text PDF


References

[1] Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., and Piramanayagam, S.N., 2017, Spintronics based random access memory: A review, Mater. Today, 20 (9), 530–548.

[2] Datta, S., and Das, B., 1990, Electronic analog of the electro‐optic modulator, Appl. Phys. Lett., 56 (7), 665–667.

[3] Manchon, A., Koo, H.C., Nitta, J., Frolov, S.M., and Duine, R.A., 2015, New perspectives for Rashba spin-orbit coupling, Nat. Mater., 14 (9), 871–882.

[4] Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H.T., and van Wees, B.J., 2007, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature, 448 (7153), 571–574.

[5] Yan, W., Phillips, L.C., Barbone, M., Hämäläinen, S.J., Lombardo, A., Ghidini, M., Moya, X., Maccherozzi, F., van Dijken, S., Dhesi, S.S., Ferrari, A.C., and Mathur, N.D., 2016, Long spin diffusion length in few-layer graphene flakes, Phys. Rev. Lett., 117 (14), 147201.

[6] Dlubak, B., Martin, M.B., Deranlot, C., Servet, B., Xavier, S., Mattana, R., Sprinkle, M., Berger, C., De Heer, W.A., Petroff, F., Anane, A., Seneor, P., and Fert, A., 2012, Highly efficient spin transport in epitaxial graphene on SiC, Nat. Phys., 8 (7), 557–561.

[7] Absor, M.A.U., Santoso, I., Harsojo, Abraha, K., Kotaka, H., Ishii, F., and Saito, M., 2017, Polarity tuning of spin-orbit-induced spin splitting in two-dimensional transition metal dichalcogenides, J. Appl. Phys., 122 (15), 153905.

[8] Hanakata, P.Z., Rodin, A.S., Carvalho, A., Park, H.S., Campbell, D.K., and Castro Neto, A.H., 2017, Two-dimensional square buckled Rashba lead chalcogenides, Phys. Rev. B: Condens. Matter, 96 (16), 161401.

[9] Hendrawan, J., Absor, M.A.U., Arifin, M., Jihad, I., and Abraha, K., 2019, Electronics structure of monochalcogenide materials MX (M = Ge, Sn and Pb; X = S and Se) buckled square lattice, IOP Conf. Ser.: Mater. Sci. Eng., 515 (1), 012105.

[10] Ozaki, T., Kino, H., Yu, J., Han, M.J., Kobayashi, N., Ohfuti, M., Ishii, F., Ohwaki, T., Weng, H., and Terakura, K., 2009, OpenMX: Open source package for Material eXplorer, http://www.openmx-square.org/.

[11] Perdew, J.P., Burke, K., and Ernzerhof, M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (18), 3865–3868.

[12] Troullier, N., and Martins, J.L., 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B: Condens. Matter, 43 (3), 1993–2006.

[13] Ozaki, T., 2003, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B: Condens. Matter, 67 (15), 155108.

[14] Ozaki, T., and Kino, H., 2004, Numerical atomic basis orbitals from H to Kr, Phys. Rev. B: Condens. Matter, 69 (19), 195113.

[15] Theurich, G., and Hill, N.A., 2001, Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials, Phys. Rev. B: Condens. Matter, 64 (7), 073106.

[16] Absor, M.A.U., and Ishii, F., 2019, Intrinsic persistent spin helix state in two-dimensional group-IV monochalcogenide MX monolayers (M = Sn or Ge and X = S, Se or Te), Phys. Rev. B: Condens. Matter, 100 (11), 115104.

[17] Gomes, L.C., and Carvalho, A., 2015, Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure, Phys. Rev. B: Condens. Matter, 92 (8), 085406.

[18] Xu, L., Yang, M., Wang, S.J., and Feng, Y.P., 2017, Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M = Ge, Sn; X = S, Se, Te), Phys. Rev. B: Condens. Matter, 95 (23), 235434.

[19] Wan, W., Liu, C., Xiao, W., and Yao, Y., 2017, Promising ferroelectricity in 2D group IV tellurides: A first-principles study, Appl. Phys. Lett., 111 (13), 132904.

[20] Acosta, C.M., Fazzio, A., and Dalpian, G.M., 2019, Zeeman-type spin splitting in nonmagnetic three-dimensional compounds, npj Quantum Mater., 4 (1), 41.

[21] Absor, M.A.U., Santoso, I., Harsojo, Abraha, K., Kotaka, H., Ishii, F., and Saito, M., 2018, Strong Rashba effect in the localized impurity states of halogen-doped monolayer PtSe2, Phys. Rev. B: Condens. Matter, 97 (20), 205138.

[22] Kotaka, H., Ishii, F., and Saito, M., 2013, Rashba effect on the structure of the Bi one-bilayer film: Fully relativistic first-principles calculation, Jpn. J. Appl. Phys., 52 (3R), 035204.

[23] Absor, M.A.U., Kotaka, H., Ishii, F., and Saito, M., 2016, Strain-controlled spin splitting in the conduction band of monolayer WS2, Phys. Rev. B: Condens. Matter, 94 (11), 115131.

[24] Vajna, S., Simon, E., Szilva, A., Palotas, K., Ujfalussy, B., and Szunyogh, L., 2012, Higher-order contributions to the Rashba-Bychkov effect with application to the Bi/Ag(111) surface alloy, Phys. Rev. B: Condens. Matter, 85 (7), 075404.

[25] Affandi, Y., and Absor, M.A.U., 2019, Electric field-induced anisotropic Rashba splitting in two dimensional tungsten dichalcogenides WX2 (X: S, Se, Te): A first-principles study, Physica E, 114, 113611.

[26] Dresselhaus, M.S., Dresselhaus, G., and Jorio, A., 2008, Group Theory – Application to the Physics of Condensed Matter, Springer-Verlag, Heidelberg, Germany.



DOI: https://doi.org/10.22146/ijc.49331

Article Metrics

Abstract views : 2228 | views : 2657


Copyright (c) 2020 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.