Influence of Different Annealing Temperatures on the Structural and Optical Properties of TiO2 Nanoparticles Synthesized via Sol-Gel Method: Potential Application as UV Sensor

Nur Munirah Safiay(1*), Rozina Abdul Rani(2), Najwa Ezira Ahmed Azhar(3), Zuraida Khusaimi(4), Fazlena Hamzah(5), Mohamad Rusop(6)

(1) NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
(2) Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
(3) NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
(4) NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
(5) Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
(6) NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
(*) Corresponding Author


In this research, TiO2 thin films were prepared using a simple sol-gel spin coating process. The films were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Ray (EDX), X-ray diffraction (XRD) and Ultraviolet–visible Spectrophotometer in order to investigate the influence of different annealing temperatures to the structural and optical properties of TiO2. The surface morphology images from FE-SEM display a uniform layer of nanoparticles with a sample of 500 °C possess the most uniform and the visible spherical grain of TiO2 nanoparticles. EDX spectra confirm the presence of Ti and O elements in the samples. The structural properties from the XRD pattern demonstrate that the films are crystalline at a temperature of 500 and 600 °C and the peak (101) intensity was increased as the annealing temperature increased. They exist in the anatase phase at the preferred plane orientation of (101). The calculated crystallite size for 500 and 600 °C samples is 19.22 and 28.37 nm, respectively. The films also possessed excellent absorption in the ultraviolet (UV) region with optical band gap energy ranging from 3.32 to 3.43 eV. These results can be fundamental for the fabrication of a UV sensing device.


TiO2; annealing; optical; UV; absorption

Full Text:

Full Text PDF


[1] Ahmad, I., Usman, M., Zhao, T., Qayum, S., Mahmood, I., Mahmood, A., Diallo, A., Obayi, C., Ezema, F.I., and Maaza, M., 2018, Bandgap engineering of TiO2 nanoparticles through MeV Cu ions irradiation, Arabian J. Chem., 13 (1), 3344–3350.

[2] Blanco, E., González-Leal, J.M., and Ramírez-del Solar, M., 2015, Photocatalytic TiO2 sol–gel thin films: Optical and morphological characterization, Sol. Energy, 122, 11–23.

[3] Zhang, X., Li, W., and Yang, Z., 2015, Toxicology of nanosized titanium dioxide: An update, Arch. Toxicol., 89 (12), 2207–2217.

[4] Khan, M.M., Ansari, S.A., Pradhan, D., Ansari, M.O., Han, D.H., Lee, J., and Cho, M.H., 2014, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A, 2 (3), 637–644.

[5] Yazid, S.A., Rosli, Z.M., and Juoi, J.M., 2018, Effect of titanium (IV) isopropoxide molarity on the crystallinity and photocatalytic activity of titanium dioxide thin film deposited via green sol–gel route, J. Mater. Res. Technol., 8 (1), 1434–1439.

[6] Lourduraj, S., and Williams, R.V., 2017, Effect of molarity on sol–gel routed nano TiO2 thin films, J. Adv. Dielectr., 7 (6), 1750–1757.

[7] Desai, N.D., Khot, K.V., Dongale, T., Musselman, K.P., and Bhosale, P.N., 2019, Development of dye sensitized TiO2 thin films for efficient energy harvesting, J. Alloys Compd., 790, 1001–1013.

[8] Tahir, M.B., Hajra, S., Rizwan, M., and Rafique, M., 2017, Optical, microstructural and electrical studies on sol gel derived TiO2 thin films, Indian J. Pure Appl. Phys., 55 (1), 81–85.

[9] Fazli, F.I.M., Ahmad, M.K., Soon, C.F., Nafarizal, N., Suriani A.B., Mohamed, A., Mamat, M.H., Malek, M.F., Shimomura, M., and Murakami, K., 2017, Dye-sensitized solar cell using pure anatase TiO2 annealed at different temperatures, Optik, 140, 1063–1068.

[10] Lin, C.P., Chen, H., Nakaruk, A., Koshy, P., and Sorrell, C.C., 2013, Effect of annealing temperature on the photocatalytic activity of TiO2 thin films, Energy Procedia, 34, 627–636.

[11] Manickam, K., Muthusamy, V., Manickam, S., Senthil, T.S., Periyasamy, G., and Shanmugam, S., 2019, Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol–gel dip coating method, Mater. Today: Proc., 23 (1), 68–72.

[12] Nadzirah, S., Hashim, U., Kashif, M., and Shamsuddin, S.A., 2017, Stable electrical, morphological and optical properties of titanium dioxide nanoparticles affected by annealing temperature, Microsyst. Technol., 23 (6), 1743–1750.

[13] Malek, M.F., Mamat, M.H., Musa, M.Z., Soga, T., Rahman, S.A., Alrokayan, S.A.H., Khan, H.A., and Rusop, M., 2015, Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process, J. Lumin., 160, 165–175.

[14] Malevu, T.D., Mwankemwa, B.S., Motloung, S.V., Tshabalala, K.G., and Ocaya, R.O., 2019, Effect of annealing temperature on nano-crystalline TiO2 for solar cell applications, Physica E, 106, 127–132.

[15] Mizuki, T., Matsuda, J.S., Nakamura, Y., Takagi, J., and Yoshida, T., 2004, Large domains of continuous grain silicon on glass substrate for high-performance TFTs, IEEE Trans. Electron Devices, 51 (2), 204–211.

[16] Achoi, M.F., Mamat, M.H., Zabidi, M.M., Abdullah, S., and Mahmood, M.R., 2012, Synthesis of TiO2 nanowires via hydrothermal method, Jpn. J. Appl. Phys., 51, 06FG08.

[17] Liu, M., Qiu, X., Hashimoto, K., and Miyauchi, M., 2014, Cu(II) nanocluster-grafted, Nb-doped TiO2 as an efficient visible-light-sensitive photocatalyst based on energy-level matching between surface and bulk states, J. Mater. Chem. A, 2 (33), 13571–13579.

[18] Singh, S., Sharma, V., and Sachdev, K., 2017, Investigation of effect of doping concentration in Nb-doped TiO2 thin films for TCO applications, J. Mater. Sci., 52 (19), 11580–11591.

[19] Safiay, M., Nadzirah, S., Khusaimi, Z., Asib, N.A.M., Hamzah, F., and Rusop, M., 2017, Transmissivity property of nanostructured TiO2 thin films, International Conference on Engineering Technology and Technopreneurship (ICE2T), 18–20 September 2017, Kuala Lumpur, Malaysia.

[20] Mamat, M.H., Sahdan, M.Z., Khusaimi, Z., Ahmed, A.Z., Abdullah, S., and Rusop, M., 2010, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications, Opt. Mater., 32 (6), 696–699.

[21] Ismail, A.S., Mamat, M.H., Md. Sin N.D., Malek, M.F., Zoolfakar, A.S., Suriani, A.B., Mohamed, A., Ahmad, M.K., and Rusop, M., 2016, Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol−gel immersion for room temperature, resistive-type humidity sensor applications, Ceram. Int., 42 (8), 9785–9795.


Article Metrics

Abstract views : 270 | views : 172

Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.