Study of the Electrochemical Behavior of Merocyanine and Merocarbocyanine Salts and Their Transformation into Π-Electron Donor Molecules, Namely Tetrathiatetraazafulvalenes

https://doi.org/10.22146/ijc.58132

Manel Khiat(1*), Fatima-Zohra Zradni(2), Souad Kasmi-Mir(3), Alejandro Baeza(4)

(1) Laboratory of Organic Synthesis, Physico-Chemistry, Biomolecules and Environment (LSPBE), Department of Chemical Engineering, Faculty of Chemistry, University of Sciences and Technology of Oran “Mohamed Boudiaf”- USTOMB, El Mnaouar، BP 1505, Bir El Djir 31000 Oran, Algeria
(2) Laboratory of Organic Synthesis, Physico-Chemistry, Biomolecules and Environment (LSPBE), Department of Chemical Engineering, Faculty of Chemistry, University of Sciences and Technology of Oran “Mohamed Boudiaf”- USTOMB, El Mnaouar، BP 1505, Bir El Djir 31000 Oran, Algeria
(3) Faculty of Science, Department of Chemistry, Saad Dahlab University Blida 1, 9000 Blida, Algeria
(4) Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante Carretera of San Vicente del Raspeig, s/n, 03690 Alicante, Spain
(*) Corresponding Author

Abstract


An electrochemical study using the cyclic voltammetry method was carried out on some previously prepared merocyanines salts, namely thiazolideniumsulfonate salts 5a-b, and thiazolidenium chloride salts 6a-b, and merocarbocyanines salts, namely alkylidenthiazolidenium sulfonate salt 5c, and alkylidenthiazolidenium chloride salt 6c. These salts are transformed by dimerization in situ in a voltammetric cell into tetrathiatetraazafulvalenes (TTTAFs) 7a-b, 7’a-b, 8c, and 8'c supposed to be π-electron donor molecules due to the existing conjugation in their structure. The structure of all new chemically synthesized molecules was confirmed by IR, 1H-NMR, 13C-NMR, and MS. The transformation of salts into TTTAF was confirmed by a reversible voltammogram curve and the variation of observed potentials.

Keywords


rhodanines; thiazolium salts; merocyanines; tetrathiafulvalenes; dithiadiazafulvalenes; cyclic voltammetry



References

[1] Akamatsu, H., Inokuchi, H., and Matsunaga, Y., 1954, Electrical conductivity of the perylene-bromine complex, Nature, 173 (4395), 168–169.

[2] Saito, G., and Yoshida, Y., 2012, Frontiers of organic conductors and superconductors, Top. Curr. Chem., 312, 67–126.

[3] Martin, N., 2013, Tetrathiafulvalene: The advent of organic metals, Chem. Commun., 49 (63), 7025–7027.

[4] Filatre-Furcate, A., Higashino, T., Lorcy, D., and Mori, T., 2015, Air-stable n-channel organic field-effect transistors based on a sulfur rich π-electron acceptor, J. Mater. Chem. C, 3 (15), 3569–3573.

[5] Gal-Oz, R., Patil, N., Khalfin, R., Cohen, Y., and Zussman, E., 2013, Conductive PVDF-HFP nanofibers with embedded TTF-TCNQ charge transfer complex, ACS Appl. Mater. Interfaces, 5 (13), 6066–6072.

[6] Prokhorova, T.G., and Yagubskii, E.B., 2017, Organic conductors and superconductors based on bis(ethylenedithio)tetrathiafulvalene radical cation salts with supramolecular tris(oxalato)metallate anions, Russ. Chem. Rev., 86 (2), 164.

[7] Paxton, W.F., Kleinman, S.L., Basuray, A.N., Stoddart, J.F., and Van Duyne, R.P., 2011, Surface-enhanced Raman spectroelectrochemistry of TTF-modified self-assembled monolayers, J. Phys. Chem. Lett., 2 (10), 1145–1149.

[8] Pérez-Rentero, S., Eritja, R., Häring, M., Saldías, C., and Díaz, D.D., 2018, Synthesis, characterization, and self-assembly of a tetrathiafulvalene (TTF)-triglycyl derivative, Appl. Sci., 8 (5), 671.

[9] Nair, M.N., Mattioli, C., Cranney, M., Malval, J.P., Vonau, F., Aubel, D., Bubendorff, J.L., Gourdon, A., and Simon, L., 2015, STM studies of self-assembled tetrathiafulvalene (TTF) derivatives on graphene: Influence of the mode of deposition, J. Phys. Chem. C, 119, 9334–9341.

[10] Tian, J., Ding, Y.D., Zhou, T.Y., Zhang, K.D., Zhao, X., Wang, H., Zhang, D.W., Liu, Yi., and Li, Z.T., 2014, Self‐assembly of three‐dimensional supramolecular polymers through cooperative tetrathiafulvalene radical cation dimerization, Chem. Eur. J., 20 (2), 575–584.

[11] Jain, A., Rao, K.V., Mogera, U., Sagade, A.J., and George, S., 2011, Dynamic self‐assembly of charge‐transfer nanofibers of tetrathiafulvalene derivatives with F4TCNQ, Chem. Eur. J., 17 (44), 12355–12361.

[12] Evans, N.H., Rahman, H., Davis, J.J., and Beer, P.D., 2012, Surface-attached sensors for cation and anion recognition, Anal. Bioanal. Chem., 402 (5), 1739–1748.

[13] Zhao, B.T., Cao, S.N., Guo, H.M., and Qu, G.R., 2013, Metal-ion-promoted intermolecular electron transfer between anthraquinone-based tetrathiafulvalene derivative and p-chloranil, Synth. Met., 174, 14–18.

[14] Shao, M., Dongare, P., Dawe, L.N., Thompson, D.W., and Zhao, Y., 2010, Biscrown-annulated TTFAQ−dianthracene hybrid: Synthesis, structure, and metal ion sensing, Org. Lett., 12 (13), 3050–3053.

[15] Blanchard, P.Y., Alévêque, O., Boisard, S., Gautier, C., El-Ghayoury, A., Le Derf, F., Breton, T., and Levillain, E., 2011, Intermolecular interactions in self-assembled monolayers of tetrathiafulvalene derivatives, Phys. Chem. Chem. Phys., 13 (6), 2118–2120.

[16] Yuge, R., Miyazaki, A., Enoki, T., Tamada, K., Nakamura, F., and Hara, M., 2002, Electrochemical properties of self-assembled monolayers composed of TTF derivative, Mol. Cryst. Liq. Cryst., 377 (1), 395–398.

[17] Gomar-Nadal, E., Ramachandran, G.K., Chen, F., Burgin, T., Rovira, C., Amabilino, D.B., and Lindsay, S.M., 2004, Self-assembled monolayers of tetrathiafulvalene derivatives on Au(111):  Organization and electrical properties, J. Phys. Chem. B, 108 (22), 7213–7218.

[18] Yokota, Y., Yuge, R., Miyazaki, A., Enoki, T., and Hara, M., 2003, Property of self-assembled monolayers of long-alkyl-chain-substituted TTF dirivative, Mol. Cryst. Liq. Cryst., 407 (1), 121–127.

[19] Yuge, R., Miyazaki, A., Enoki, T., Ito, E., Nakamura, F., and Hara, M., 2001, Characterization and electronic properties of TTF SAMs on Au(111), Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 370 (1), 273–276.

[20] Suzuki, A., Inoue, K., Yano, K., Oku, T., and Kikuchi, K., 2010, Fabrication and characterization of C60/tetrathiafulvalene solar cells, J. Phys. Chem. Solids, 71 (11), 1587–1591.

[21] Martín, N., Sánchez, L., Herranz, M.Á., Illescas, B., and Guldi, D.M., 2007, Electronic communication in tetrathiafulvalene (TTF)/C60 systems: Toward molecular solar energy conversion materials, Acc. Chem. Res., 40 (10), 1015–1024.

[22] Martin-Gomis, L., Nielsen, K.A., Fernandez-Lázaro, F., Jeppesen, J.O., and Sastre-Santos, A., 2011, Supramolecular (2,5,7-trinitrofluorene)-C60/tetrathiafulvalene-calix[4]pyrrole systems, Meet. Abstr., 01, 1692.

[23] Konarev, D.V., Shul'ga, Y.M., Roshchupkina, O.S., and Lyubovskaya, R.N., 1997, Synthesis and some properties of charge transfer complexes of C60 with asymmetric donors of tetrathiafulvalene family, J. Phys. Chem. Solids, 58 (11), 1869–1872.

[24] Lai, G., Liu, Y., Zhang, Y., Ruan, J., Li, M., and Shen, Y., 2009, Synthesis and properties of tetrathiafulvalene-fluorescein dyads, Front. Chem. Eng. China, 3 (3), 314–317.

[25] Mas-Torrent, M., Hadley, P., Bromley, S.T., Ribas, X., Tarrés, J., Mas, M., Molins, E., Veciana, J., and Rovira, C., 2004, Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives, J. Am. Chem. Soc., 126 (27), 8546–8553.

[26] Schröder, H.V., and Schalley, C.A., 2018, Tetrathiafulvalene – A redox-switchable building block to control motion in mechanically interlocked molecules, Beilstein J. Org. Chem., 14, 2163–2185.

[27] Wang, C., Dyar, S.M., Cao, D.C., Fahrenbach, A.C., Horwitz, N., Colvin, M.T., Carmieli, R., Stern, C.L., Dey, S.K., Wasielewski, M.R., and Stoddart, J.F., 2012, Tetrathiafulvalene hetero radical cation dimerization in a redox-active [2]catenane, J. Am. Chem. Soc., 134 (46), 19136–19145.

[28] Pauliukaite, R., Malinauskas, A., Zhylyak, G., and Spichiger‐Keller, U.E., 2007, Conductive organic complex salt TTF‐TCNQ as a mediator for biosensors. An overview, Electroanalysis, 19 (24), 2491–2498.

[29] Cao, Z., Jiang, X., Xie, Q., and Yao, S., 2008, A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in a tetrathiafulvalene–tetracyanoquinodimethane/multiwalled carbon nanotubes film, Biosens. Bioelectron., 24 (2), 222–227.

[30] Tehfe, M.A., Monot, J., Malacria, M., Fensterbank, L., Fouassier, J.P., Curran, D.P., Lacôte, E., and Lalevée, J., 2012, A water-compatible NHC-borane: Photopolymerizations in water and rate constants for elementary radical reactions, ACS Macro Lett., 1 (1), 92–95.

[31] Zappe, L., Schönfeld, S., Hörner, G., Zenere, K.A., Leong, C.F., Kepert, C.J., D'Alessandro, D.M., Weber, B., and Neville, S.M., 2020, Spin crossover modulation in a coordination polymer with the redox-active bis-pyridyltetrathiafulvalene (py2TTF) ligand, Chem. Commun., 56 (72), 10469–10472.

[32] Wang, H.Y., Cui, L., Xie, J.Z., Leong, C.F., D’Alessandro, D.M., and Zuo, J.L., 2017, Functional coordination polymers based on redox-active tetrathiafulvalene and its derivatives, Coord. Chem. Rev., 345, 342–361.

[33] Nambu, S., Nakahodo, T., and Fujihara, H., 2014, Synthesis and properties of conducting polymer nanotubes with redox-active tetrathiafulvalene, Heterocycles, 88 (2), 1633–1638.

[34] Nielsen, M.B., Lomholt, C., and Becher, J., 2000, Tetrathiafulvalenes as building blocks in supramolecular chemistry II, Chem. Soc. Rev., 29 (3), 153–164.

[35] Miyasaka, H., Motokawa, N., Matsunaga, S., Yamashita, M., Sugimoto, K., Mori, T., Toyota, N., and Dunbar, K.R., 2010, Control of charge transfer in a series of Ru2II,II/TCNQ two-dimensional networks by tuning the electron affinity of TCNQ units: A route to synergistic magnetic/conducting materials, J. Am. Chem. Soc., 132 (5), 1532–1544.

[36] Guérin, D., Carlier, R., Guerro, M., and Lorcy, D., 2003, Crown-ether annelated dithiadiazafulvalenes, Tetrahedron, 59 (28), 5273–5278.

[37] Singh, S.P., Parmar, S.S., Raman, K., and Stenberg, V.I., 1981, Chemistry and biological activity of thiazolidinedinones, Chem. Rev., 81 (2), 175–203.

[38] Mahalle, S.R., Netankar, P.D., Bondge, S.P., and Mane, R.A., 2008, An efficient method for Knoevenagel condensation: a facile synthesis of 5-arylidenyl 2, 4-thiazolidinedione, Green Chem. Lett. Rev., 1 (2), 103–106.

[39] Guérin, D., 2001, Modulation des propriétés rédox du donneur π dithiadiazafulvalène appliquée à la formation de matériaux moléculaires, Dissertation, Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes 1, Rennes, France.

[40] Broggi, J., Terme, T., and Vanelle, P., 2014, Organic electron donors as powerful single‐electron reducing agents in organic synthesis, Angew. Chem. Int. Ed., 53 (2), 384–413.

[41] Janikowska, K., and Makowiec, S., 2010, Simple method for the preparation of dialkyl (2,3-dihydro-1,3-thiazol-2-YL)-phosphonates, Phosphorus, Sulfur Silicon Relat. Elem., 186 (1), 12–20.

[42] Časar, Z., Leban, I., Majcen-le Marechal, A., Piekara-Sady, L., and Lorcy, D., 2009, Charge transfer complexes and cation radical salts of azino-diselenadiazafulvalene, C.R. Chim., 12 (9), 1057–1065.



DOI: https://doi.org/10.22146/ijc.58132

Article Metrics

Abstract views : 256 | views : 131 | views : 91


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.