Flavonoids as Antidiabetic Agents


Yana Cahyana(1*), Tsani Adiyanti(2)

(1) Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor 40600, West Java, Indonesia
(2) Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor 40600, West Java, Indonesia
(*) Corresponding Author


Flavonoids are polyphenol compounds that exert many potential health benefits, including diabetes type-II, which is the third most common disease that causes death, right after cancer and cardiovascular diseases. The excessively high level of blood glucose has been believed to trigger type II diabetes. The aim of this review is to describe the flavonoid's ability as an alternative treatment for diabetes type-II patients. This paper addresses several aspects in which flavonoids may impart a pivotal role in starch digestion, such as the interaction of flavonoids with enzymes involved in starch hydrolysis, the role of flavonoids in inhibiting glucose absorption, as well as the interaction of flavonoids with starch to form a complex resistant to hydrolysis. Further studies, however, are suggested to extensively carry out, particularly the ones dealing with the intervention study using human volunteers to reveal the role of flavonoids in the real applications. The data on human intervention studies are still rare and can further be exploited using meta-analysis to have firmer results. Flavonoids in the food matrix are more realistic to perform to reveal the effect of interaction with other compounds, which may affect the mechanism of flavonoids interaction or their bioavailability.


antidiabetic; flavonoids; interactions of flavonoids; starch digestion

Full Text:

Full Text PDF


[1] Fitrullah, and Rousdy, A., 2017, Effectiveness of Acupressure at the Zusanli (ST-36) Acupoint as a Comfortable Treatment for Diabetes Mellitus: A Pilot Study in Indonesia, JAMS J. Acupunct. Meridian Stud., 10 (2), 96–103.

[2] Nair, A.S., Bagchi, D., Lehmann, T.E., and Nair, S., 2018, "Renal Sodium-Glucose Transporter-2 Inhibitors as Antidiabetic Agents" in Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome, 2nd Ed., Academic Press, Cambridge, MA, United States, 207-2014.

[3] Tariq, A., Sadia, S., Fan, Y., Ali, S., Amber, R., Mussarat, S., Ahmad, M., Murad, W., Zafar, M., and Adnan, M., 2020, Herbal medicines used to treat diabetes in Southern regions of Pakistan and their pharmacological evidence, J. Herb. Med., 21, 100323.

[4] Whiting, D.R., Guariguata, L., Weil, C., and Shaw, J., 2011, IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030, Diabetes Res. Clin. Pract., 94 (3), 311–321.

[5] Aleali, A.M., Payami, S.P., Latifi, S.M., Yazdanpanah, L., Hesam, S., and Khajeddin, N., 2018, Evaluation of psychological resistance to insulin treatment in type II diabetic patients, Diabetes Metab. Syndr., 12 (6), 929–932.

[6] Castagneto-Gissey, L., Angelini, G., Casella-Mariolo, J.R., Marini, P., Mingrone, G., and Casella, G., 2020, The jejunum is the key factor in insulin resistance, Surg. Obes. Relat. Dis., 16 (4), 509–519.

[7] Xu, P., Marsafari, M., Zha, J., and Koffas, M., 2020, Microbial coculture for flavonoid synthesis, Trends Biotechnol., 38 (7), 686–688.

[8] Farombi, E.O., Akinmoladun, A.C., and Owumi, S.E., 2019, "Anti-cancer foods: Flavonoids" in Encyclopedia of Food Chem., Volume 3, Eds. Melton, L., Shahidi, F., and Varelis, P., Academic Press, Cambridge, MA, United States, 224-236.

[9] Ademiluyi, A.O., and Oboh, G., 2013, Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro, Exp. Toxicol. Pathol., 65 (3), 305–309.

[10] Proença, C., Freitas, M., Ribeiro, D., Tomé, S.M., Oliveira, E.F.T., Viegas, M.F., Araújo, A.N., Ramos, M.J., Silva, A.M.S., Fernandes, P.A., and Fernandes, E., 2019, Evaluation of a flavonoids library for inhibition of pancreatic α-amylase towards a structure–activity relationship, J. Enzyme Inhib. Med. Chem., 34 (1), 577–588.

[11] Costa, T.M., Mayer, D.A., Siebert, D.A., Micke, G.A., Alberton, M.D., Tavares, L.B.B., and de Oliveira, D., 2020, Kinetics analysis of the inhibitory effects of alpha-glucosidase and identification of compounds from Ganoderma lipsiense mycelium, Appl. Biochem. Biotechnol., 191 (3), 996-1009.

[12] Goto, T., Horita, M., Nagai, H., Nagatomo, A., Nishida, N., Matsuura, Y., and Nagaoka, S., 2012, Tiliroside, a glycosidic flavonoid, inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract, Mol. Nutr. Food Res., 56 (3), 435–445.

[13] Takahama, U., and Hirota, S., 2018, Interactions of flavonoids with α-amylase and starch slowing down its digestion, Food Funct., 9 (2), 677–687.

[14] Hussain, T., Tan, B., Murtaza, G., Liu, G., Rahu, N., Saleem Kalhoro, M., Hussain Kalhoro, D., Adebowale, T.O., Usman Mazhar, M., Rehman, Z., Martínez, Y., Akber Khan, S., and Yin, Y., 2020, Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy, Pharmacol. Res., 152, 104629.

[15] Chiang, Y.C., Chen, C.L., Jeng, T.L., Lin, T.C., and Sung, J.M., 2014, Bioavailability of cranberry bean hydroalcoholic extract and its inhibitory effect against starch hydrolysis following in vitro gastrointestinal digestion, Food Res. Int., 64, 939–945.

[16] Ballard, C.R., and Maróstica, M.R., 2019, "Health benefits of flavonoids" in Bioactive Compounds, Woodhead Publishing Cambridge, MA, United States, 185–201.

[17] Tan, H., Man, C., Xie, Y., Yan, J., Chu, J., and Huang, J., 2019, A crucial role of GA-regulated flavonol biosynthesis in root growth of Arabidopsis, Mol. Plant, 12 (4), 521–537.

[18] Campone, L., Celano, R., Piccinelli, A.L., Pagano, I., Carabetta, S., Di Sanzo, R., Russo, M., Ibañez, E., Cifuentes, A., and Rastrelli, L., 2018, Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds, Food Chem., 269, 495–502.

[19] Endo, S., Matsuoka, T., Nishiyama, T., Arai, Y., Kashiwagi, H., Abe, N., Oyama, M., Matsunaga, T., and Ikari, A., 2019, Flavonol glycosides of Rosa multiflora regulates intestinal barrier function through inhibiting claudin expression in differentiated Caco-2 cells, Nutr. Res., 72, 92–104.

[20] Kimura, H., Ogawa, S., Ishihara, T., Maruoka, M., Tokuyama-Nakai, S., Jisaka, M., and Yokota, K., 2017, Antioxidant activities and structural characterization of flavonol O-glycosides from seeds of Japanese horse chestnut (Aesculus turbinata BLUME), Food Chem., 228, 348–355.

[21] Chen, Y., Chen, Q., Wang, X., Sun, F., Fan, Y., Liu, X., Li, H., and Deng, Z., 2020, Hemostatic action of lotus leaf charcoal is probably due to transformation of flavonol aglycons from flavonol glycosides in traditional Chinses medicine, J. Ethnopharmacol., 249, 112364.

[22] Xie, L., Cao, Y., Zhao, Z., Ren, C., Xing, M., Wu, B., Zhang, B., Xu, C., Chen, K., and Li, X., 2020, Involvement of MdUGT75B1 and MdUGT71B1 in flavonol galactoside/glucoside biosynthesis in apple fruit, Food Chem., 312, 126124.

[23] Cassidy, A., and Kay, C., 2013, "Phytochemicals: Classification and occurrence" in Encyclopedia of Human Nutrition, 3rdEd., Eds. Caballero, B., Academia Press, Cambridge, MA, United States, 39–46.

[24] Sharma, A., Tuli, H.S., Kashyap, D., and Sharma, A.K., 2019, "Flavones: Flavonoids having chemico-biological properties with a preview into anticancer action mechanism" in Bioactive Natural Products for the Management of Cancer from Bench to Bedside, Eds. Sharma, A., Springer, Singapore, 71–89.

[25] Chua, L.S., Abdullah, F.I., and Awang, M.A., 2020, Potential of natural bioactive C-glycosyl flavones for antidiabetic properties, Stud. Nat. Prod. Chem., 64, 241–261.

[26] Jiang, N., Doseff, A.I., and Grotewold, E., 2016, Flavones: From biosynthesis to health benefits, Plants, 5 (2), 27.

[27] Arroo, R.R.J., Şöhretoğlu, D., Spandidos, D.A., and Androutsopoulos, V.P., 2017, Anticancer potential of flavones, Proceedings, 1 (10), 975.

[28] Li, X., Wang, X., Li, C., Khutsishvili, M., Fayvush, G., Atha, D., Zhang, Y., and Borris, R.P., 2019, Unusual flavones from Primula macrocalyx as inhibitors of OAT1 and OAT3 and as antifungal agents against Candida rugosa, Sci. Rep., 9 (1), 9230.

[29] Duarte, S., Arango, D., Parihar, A., Hamel, P., Yasmeen, R., and Doseff, A.I., 2013, Apigenin protects endothelial cells from lipopolysaccharide (LPS)-induced inflammation by decreasing caspase-3 activation and modulating mitochondrial function, Int. J. Mol. Sci., 14 (9), 17664–17679.

[30] Mena, P., Domínguez-Perles, R., Gironés-Vilaplana, A., Baenas, N., García-Viguera, C., and Villaño, D., 2014, Flavan-3-ols, anthocyanins, and inflammation, IUBMB Life, 66 (11), 745–758.

[31] Wang, H., Provan, G.J., and Helliwell, K., 2000, Tea flavonoids: Their functions, utilisation and analysis, Trends Food Sci. Technol., 11 (4-5), 152–160.

[32] Barrett, A.H., Farhadi, N.F., and Smith, T.J., 2018, Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins— A review of efficacy and mechanisms, LWT Food Sci. Technol., 87, 394–399.

[33] Pons, Z., Margalef, M., Bravo, F.I., Arola-Arnal, A., and Muguerza, B., 2016, Grape seed flavanols decrease blood pressure via Sirt-1 and confer a vasoprotective pattern in rats, J. Funct. Foods, 24, 164–172.

[34] Rull, G., Mohd-Zain, Z.N., Shiel, J., Lundberg, M.H., Collier, D.J., Johnston, A., Warner, T.D., and Corder, R., 2015, Effects of high flavanol dark chocolate on cardiovascular function and platelet aggregation, Vascul. Pharmacol., 71, 70–78.

[35] Grzesik, M., Bartosz, G., Dziedzic, A., Narog, D., Namiesnik, J., and Sadowska-Bartosz, I., 2018, Antioxidant properties of ferrous flavanol mixtures, Food Chem., 268, 567–576.

[36] Griffin, L.E., Fausnacht, D.W., Tuzo, J.L., Addington, A.K., Racine, K.C., Zhang, H., Hughes, M.D., England, K.M., Bruno, R.S., O’Keefe, S.F., Neilson, A.P., and Stewart, A.C., 2019, Flavanol supplementation protects against obesity-associated increases in systemic interleukin-6 levels without inhibiting body mass gain in mice fed a high-fat diet, Nutr. Res., 66, 32–47.

[37] Meng, H.C., Gao, J., Zheng, H.C., Damirin, A., and Ma, C.M., 2015, Diacetylated and acetone-conjugated flavan-3-ols as potent antioxidants with cell penetration ability, J. Funct. Foods, 12, 256–261.

[38] Balzer, J., Rassaf, T., Heiss, C., Kleinbongard, P., Lauer, T., Merx, M., Heussen, N., Gross, H.B., Keen, C.L., Schroeter, H., and Kelm, M., 2008, Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients: A double-masked, randomized, controlled trial, J. Am. Coll. Cardiol., 51 (22), 2141–2149.

[39] Ajmala Shireen, P., Abdul Mujeeb, V.M., and Muraleedharan, K., 2017, Theoretical insights on flavanones as antioxidants and UV filters: A TDDFT and NLMO study, J. Photochem. Photobiol., B, 170, 286–294.

[40] Escudero-López, B., Cerrillo, I., Herrero-Martín, G., Hornero-Méndez, D., Gil-Izquierdo, A., Medina, S., Ferreres, F., Berná, G., Martín, F., and Fernández-Pachón, M.S., 2013, Fermented orange juice: Source of higher carotenoid and flavanone contents, J. Agric. Food Chem., 61 (37), 8773–8782.

[41] Lee, J.H., 2015, In-vitro evaluation for antioxidant and anti-inflammatory property of flavanone derivatives, Food Biosci., 11, 1–7.

[42] Hsiao, Y.C., Kuo, W.H., Chen, P.N., Chang, H.R., Lin, T.H., Yang, W.E., Hsieh, Y.S., and Chu, S.C., 2007, Flavanone and 2′-OH flavanone inhibit metastasis of lung cancer cells via down-regulation of proteinases activities and MAPK pathway, Chem. Biol. Interact., 167 (3), 193–206.

[43] Kim, E.H., Lee, O.K., Kim, J.K., Kim, S.L., Lee, J., Kim, S.H., and Chung, I.M., 2014, Isoflavones and anthocyanins analysis in soybean (Glycine max (L.) Merill) from three different planting locations in Korea, F. Crop. Res., 156, 76–83.

[44] Teekachunhatean, S., Hanprasertpong, N., and Teekachunhatean, T., 2013, Factors affecting isoflavone content in soybean seeds grown in Thailand, Int. J. Agron., 2013, 1–11.

[45] Watanabe, S., Yamada, R., Kanetake, H., Kaga, A., and Anai, T., 2019, Identification and characterization of a major QTL underlying soybean isoflavone malonylglycitin content, Breed. Sci., 69 (4), 564–572.

[46] Wei, P., Liu, M., Chen, Y., and Chen, D.C., 2012, Systematic review of soy isoflavone supplements on osteoporosis in women, Asian Pac. J. Trop. Med., 5 (3), 243–248.

[47] Wang, Q., Ge, X., Tian, X., Zhang, Y., Zhang, J., and Zhang, P., 2013, Soy isoflavone: The multipurpose phytochemical (Review), Biomed. Rep., 1 (5), 697–701.

[48] Lu, Y., An, Y., Lv, C., Ma, W., Xi, Y., and Xiao, R., 2018, Dietary soybean isoflavones in Alzheimer’s disease prevention, Asia Pac. J. Clin. Nutr., 27 (5), 946–954.

[49] Wada, K., Nakamura, K., Tamai, Y., Tsuji, M., Kawachi, T., Hori, A., Takeyama, N., Tanabashi, S., Matsushita, S., Tokimitsu, N., and Nagata, C., 2013, Soy isoflavone intake and breast cancer risk in Japan: From the Takayama study, Int. J. Cancer, 133 (4), 952–960.

[50] Santos-Buelga, C., and Gonzáles-Paramás, A.M., 2019, “Anthocyanins” in Encyclopedia of Food Chemistry, Volume 1, Eds. Melton, L., Shahidi, F., and Varelis, P., Academic Press, Oxford, United Kingdom, 10–21.

[51] Guo, H., and Xia, M., 2018, "Anthocyanins and diabetes regulation" in Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd Ed., Eds. Watson, R.R., Preedy, V.R., and Zibadi, S., Academic Press, Cambridge, MA, United States, 135–145.

[52] Cahyana, Y., and Gordon, M.H., 2013, Interaction of anthocyanins with human serum albumin: Influence of pH and chemical structure on binding, Food Chem., 141 (3), 2278–2285.

[53] Castro-Acosta, M.L., Stone, S.G., Mok, J.E., Mhajan, R.K., Fu, C.I., Lenihan-Geels, G.N., Corpe, C.P., and Hall, W.L., 2017, Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women, J. Nutr. Biochem., 49, 53–62.

[54] Castro-Acosta, M.L., Smith, L., Miller, R.J., McCarthy, D.I., Farrimond, J.A., and Hall, W.L., 2016, Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations, J. Nutr. Biochem., 38, 154–161.

[55] Barik, S.K., Russell, W.R., Moar, K.M., Cruickshank, M., Scobbie, L., Duncan, G., and Hoggard, N., 2020, The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters, J. Nutr. Biochem., 78, 108325.

[56] Gomes, J.V.P., Rigolon, T.C.B., Souza, M.S.S., Alvarez-Leite, J.I., Lucia, C.M.D., Martino, H.S.D., and Rosa, C.O.B., 2019, Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review, Nutrition, 66, 192–202.

[57] Lin, B.W., Gong, C.C., Song, H.F., and Cui, Y.Y., 2017, Effects of anthocyanins on the prevention and treatment of cancer, Br. J. Pharmacol., 174 (11), 1226–1243.

[58] Cahyana, Y., Gordon, M.H., and Gibson, T.M., 2019, Urinary excretion of anthocyanins following consumption of strawberry and red grape juice, Int. J. Vitam. Nutr. Res., 89 (1-2), 29–36.

[59] Fernández-Acosta, K., Salmeron, I., Chavez-Flores, D., Perez-Reyes, I., Ramos, V., Ngadi, M., Kwofie, E.M., and Perez-Vega, S., 2019, Evaluation of different variables on the supercritical CO2 extraction of oat (Avena sativa L.) oil; Main fatty acids, polyphenols, and antioxidant content, J. Cereal Sci., 88, 118–124.

[60] Mayer, J., and Donnely, T.M., 2013, “Amylase” in Clinical Veterinary Advisor: Birds Exotic Pets, W.B. Saunders, Saint Louis, USA, 602–603.

[61] Abd-Elaziz, A.M., Karam, E.A., Ghanem, M.M., Moharam, M.E., and Kansoh, A.L., 2020, Production of a novel α-amylase by Bacillus atrophaeus NRC1 isolated from honey: Purification and characterization, Int. J. Biol. Macromol., 148, 292–301.

[62] Krishnan, M., Nagendran, N.A., Pandiaraja, D., and Moorthi, P.V., 2017, Isolation and characterization of amylase producers and optimization of enzyme production, Int. J. Dev. Res., 7 (12), 18128–18134.

[63] Tiwari, S., Srivastava, R., Singh, C.S., Shukla, K., Singh, R.K., Singh, P., Singh, R., Singh, N.L., and Sharma, R., 2015, Amylases: An overview with special reference to alpha amylase, J. Global Biosci., 4 (SI 1), 1886–1901.

[64] Sun, L., Warren, F.J., and Gidley, M.J., 2019, Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase, Trends Food Sci. Technol., 91, 262–273.

[65] Hasimun, P., and Adnyana, I.K., 2019, "Zingiberaceae family effects on alpha-glucosidase activity: Implication for diabetes" in Bioactive Food as Dietary Interventions for Diabetes, 2nd Ed., Eds. Watson, R.R., and Preedy, V.R., Academic Press, Cambridge, MA, United States, 387–393.

[66] Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M., and Chou, C.J., 2008, Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase, J. Med. Chem., 51 (12), 3555–3561.

[67] Pascual, J.M., Wang, D., and De Vivo, D.C., 2015, Glucose transporter type I deficiency and other glucose flux disorders, in Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease, 5th Ed., Eds. Rosenberg, R.N., and Pascual, J.M., Academic Press, Boston, MA, United States, 649–662.

[68] Chiang, Y.C., Chen, C.L., Jeng, T.L., and Sung, J.M., 2014, In vitro inhibitory effects of cranberry bean (Phaseolus vulgaris L.) extracts on aldose reductase, α-glucosidase and α-amylase, Int. J. Food Sci. Technol., 49 (6), 1470–1479.

[69] Yuan, E., Liu, B., Wei, Q., Yang, J., Chen, L., and Li, Q., 2014, Structure activity relationships of flavonoids as potent α-amylase inhibitors, NPC Nat. Prod. Commun., 9 (8), 1–4.

[70] Gopinath, S.C.B., Anbu, P., Arshad, M.K., Lakshmipriya, T., Voon, C.H., Hashim, U., and Chinni, S.V, 2017, Biotechnological processes in microbial amylase production, Biomed Res. Int., 2017, 1272193.

[71] Lotulung, P.D.N., Mozef, T., Risdian, C., and Darmawan, A., 2014, In vitro antidiabetic activities of extract and isolated flavonoid compounds from Artocarpus altilis (Parkinson) Fosberg, Indones. J. Chem., 14 (1), 7–11.

[72] Anisah, L.N., Syafii, W., Pari, G., and Sari, R.K., 2018, Antidiabetic activities and identification of chemical compound from samama (Anthocephalus macrophyllus (Roxb) Havil), Indones. J. Chem., 18 (1), 66–74.

[73] Wu, X., Hu, M., Hu, X., Ding, H., Gong, D., and Zhang, G., 2019, Inhibitory mechanism of epicatechin gallate on α-amylase and α-glucosidase and its combinational effect with acarbose or epigallocatechin gallate, J. Mol. Liq., 290, 111202.

[74] Luo, F., Liu, X., She, Y., and Gao, W., 2018, Three Citrus flavonoids retard the digestion of starch and its working mechanisms, Int. J. Food Sci. Technol., 53 (2), 365–371.

[75] Navale, A., 2019, "Glucose transporters and their cellular form, role and function" in Molecular Nutrition: Carbohydrates, Eds. Patel, V.B., Academic Press, Cambridge, MA, United States, 21–34.

[76] Bryant, N.J., Govers, R., and James, D.E., 2002, Regulated transport of the glucose transporter GLUT4, Nat. Rev. Mol. Cell Biol., 3 (4), 267–277.

[77] Govers, R., 2014, Cellular regulation of glucose uptake by glucose transporter GLUT4, Adv. Clin. Chem., 66, 173–240.

[78] Al-Ishaq, R.K., Abotaleb, M., Kubatka, P., Kajo, K., and Büsselberg, D., 2019, Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels, Biomolecules, 9 (9), 430.

[79] Manzano, S., and Williamson, G., 2010, Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells, Mol. Nutr. Food Res., 54 (12), 1773–1780.

[80] Kwon, O., Eck, P., Chen, S., Corpe, C.P., Lee, J., Kruhlak, M., and Levine, M., 2007, Inhibition of the intestinal glucose transporter GLUT2 by flavonoids, FASEB J., 21 (2), 366–377.

[81] Goodrich, J.A., and Kugel, J.F., 2007, Binding and kinetics for molecular biologists, Q. Rev. Biol., 82 (3), 268–269.

[82] Mi, Y., Qi, G., Gao, Y., Li, R., Wang, Y., Li, X., Huang, S., and Liu, X., 2017, (-)-Epigallocatechin-3-gallate ameliorates insulin resistance and mitochondrial dysfunction in HepG2 cells: Involvement of Bmal1, Mol. Nutr. Food Res., 61 (12), 1700440.

[83] Pitura, K., and Arntfield, S.D., 2019, Characteristics of flavonol glycosides in bean (Phaseolus vulgaris L.) seed coats, Food Chem., 272, 26–32.

[84] Bittner, K., Rzeppa, S., and Humpf, H.U., 2013, Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes, J. Agric. Food Chem., 61 (38), 9148–9154.

[85] Hu, B., Liu, X., Zhang, C., and Zeng, X., 2017, Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols, J. Food Drug Anal., 25 (1), 3–15.

[86] Lachos-Perez, D., Baseggio, A.M., Mayanga-Torres, P.C., Maróstica, M.R., Rostagno, M.A., Martínez, J., and Forster-Carneiro, T., 2018, Subcritical water extraction of flavanones from defatted orange peel, J. Supercrit. Fluids, 138, 7–16.

[87] Lee, M.J., Chung, I.M., Kim, H., and Jung, M.Y., 2015, High resolution LC-ESI-TOF-mass spectrometry method for fast separation, identification, and quantification of 12 isoflavones in soybeans and soybean products, Food Chem., 176, 254–262.

[88] Nugroho, A., Heryani, H., Choi, J.S., and Park, H.J., 2017, Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity, Asian Pac. J. Trop. Biomed., 7 (3), 208–213.

[89] Liu, J., Hefni, M.E., and Witthöft, C.M., 2020, Characterization of flavonoid compounds in common Swedish berry species, Foods, 9 (3), 358.

[90] Tsanova-Savova, S., and Ribarova, F., 2013, Flavonols and flavones in some Bulgarian plant foods, Pol. J. Food Nutr. Sci., 63 (3), 173–177.

[91] Hostetler, G.L., Ralston, R.A., and Schwartz, S.J., 2017, Flavones: Food sources, bioavailability, metabolism, and bioactivity, Adv. Nutr., 8 (3), 423–435.

[92] Arts, I.C.W., van de Putte, B., and Hollman, P.C.H., 2000, Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods, J. Agric. Food Chem., 48 (5), 1746–1751.

[93] Ceymann, M., Arrigoni, E., Schärer, H., Bozzi Nising, A., and Hurrell, R.F., 2012, Identification of apples rich in health-promoting flavan-3-ols and phenolic acids by measuring the polyphenol profile, J. Food Compos. Anal., 26 (1-2), 128–135.

[94] Stevenson, D., and Scalzo, J., 2012, Anthocyanin composition and content of blueberries from around the world, J. Berry Res., 2 (4), 179–189.

[95] Zhang, Y., Lin, Y., Huang, L., Tekliye, M., Rasheed, H.A., and Dong, M., 2020, Composition, antioxidant, and anti-biofilm activity of anthocyanin-rich aqueous extract from purple highland barley bran, LWT Food Sci. Technol., 125, 109181.

[96] Chebrolu, K.K., Jifon, J., and Patil, B.S., 2016, Modulation of flavanone and furocoumarin levels in grapefruits (Citrus paradisi Macfad.) by production and storage conditions, Food Chem., 196, 374–380.

[97] Cao, W., Ye, L.H., Cao, J., Xu, J.J., Peng, L.Q., Zhu, Q.Y., Zhang, Q.Y., and Hu, S.S., 2015, Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry, J. Chromatogr. A, 1406, 68–77.

[98] Gao, Y., Yao, Y., Zhu, Y., and Ren, G., 2015, Isoflavone content and composition in chickpea (Cicer arietinum L.) sprouts germinated under different conditions, J. Agric. Food Chem., 63 (10), 2701–2707.

DOI: https://doi.org/10.22146/ijc.58439

Article Metrics

Abstract views : 7520 | views : 6562

Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.