Bioactive Secondary Metabolites from the Mangrove Endophytic Fungi Nigrospora oryzae

https://doi.org/10.22146/ijc.63129

Antonius Rolling Basa Ola(1*), Titus Lapailaka(2), Hermania Em Wogo(3), Julinda Bendalina Dengga Henuk(4), Agnes Simamora(5), Lince Mukkun(6), Peter Proksch(7), Chong Dat Pham(8)

(1) Department of Chemistry, Faculty of Science and Engineering, Universitas Nusa Cendana, Jl. Adisucipto, Penfui-Kupang 85118, NTT, Indonesia
(2) Department of Chemistry, Faculty of Science and Engineering, Universitas Nusa Cendana, Jl. Adisucipto, Penfui-Kupang 85118, NTT, Indonesia
(3) Department of Chemistry, Faculty of Science and Engineering, Universitas Nusa Cendana, Jl. Adisucipto, Penfui-Kupang 85118, NTT, Indonesia
(4) Agro Technology Department, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, NTT, Indonesia
(5) Agro Technology Department, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, NTT, Indonesia
(6) Agro Technology Department, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, NTT, Indonesia
(7) Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
(8) Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX-77054, USA
(*) Corresponding Author

Abstract


Mangrove forest has a distinctive habitat adapting with marine and terrestrial environment. Chemical investigation of the extract from mangrove endophytic fungi Nigrospora oryzae had resulted in the isolation of sterigmatocystin (1) and pestalopyrone (2). The structure of sterigmatocystin (1) and pestalopyrone (2) were elucidated using mass, UV and NMR spectrometers together with the comparison with the literature data. The study also showed that sterigmatocystin displayed moderate cytotoxicity but it could be further developed as antiviral and antibacterial agent based on the SAR information reported from its analogue and derivatives.


Keywords


Nigrospora oryzae; mangrove; sterigmatocystin; pestalopyrone

Full Text:

Full Text PDF


References

[1] Bara, R., Zerfass, I., Aly, A.H., Goldbach-Gecke, H., Raghavan, V., Sass, P., Mándi, A., Wray, V., Polavarapu, P.L., Pretsch, A., Lin, W.H., Kurtán, T., Debbab, A., Brőtz-Oesterhelt, H., and Proksch, P., 2013, Atropisomeric dihydroanthracenones as inhibitors of multiresistant Staphylococcus aureus, J. Med.Chem., 56 (8), 3257–3272.

[2] Uzma, F., Mohan, C.D., Hashem, A., Konappa, N.M., Rangappa, S., Kamath, P.V., Singh, B.P., Mudili, V., Gupta, V.K., Siddaiah, C.N., Chowdappa, S., Alqarawi, A.A., and Abd_Allah, E.F., 2018, Endophytic fungi—Alternative sources of cytotoxic compounds: A review, Front. Pharmacol., 9, 309.

[3] Bara, R., Aly, A.H., Pretsch, A., and Wray, V., 2013, Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera, J. Antibiot, 66 (8), 491–493.

[4] Ola, A.R.B., Metboki, G., Lay, C.S., Sugi, Y., De Rozari, P., Darmakusuma, D., and Hakim, E.H., 2019, Single Production of kojic acid by Aspergillus flavus and the revision of flufuran, Molecules, 24 (22), 4200.

[5] Ola, A.R.B., Tawo, B.D., Belli, H.L.L., Proksch, P., Tommy, D., and Hakim, E.H., 2018, A new antibacterial polyketide from the endophytic fungi Aspergillus fumigatiaffinis, Nat. Prod. Commun., 13 (12), 1573–1574.

[6] Ola, A.R.B., 2020, Production of valuable chemical compounds isolated from plants by endophytic fungi, IOP Conf. Ser.: Mater. Sci. Eng., 823, 012045.

[7] Palem, P.P.C., Kuriakose, G.C., and Jayabaskaran, C., 2015, An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death, PLoS One, 10 (12), e0144476.

[8] Kumar, A., Patil, D., Rajamohanan, P.R., and Ahmad, A., 2013, Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus, PLoS One, 8 (9), e71805.

[9] Handayani D., Wahyuningsih, T., Rustini, Artasasta, M.A., Putra, A.E., and Proksch, P., 2020, Bioactive compound from the mangrove plant endophytic fungus Diaporthe amygdali SgKB4, Rasayan J. Chem., 13 (1), 327–332.

[10] Ola, A.R.B., Soa, C.A.P., Da Cunha, T., Sugi, Y., Belli, L.L.H., and Lalel, H.J.D., 2020, Antimicrobial metabolite from the endophytic fungi Aspergillus flavus isolated from Sonneratia alba, a mangrove plant of Timor-Indonesia, Rasayan J. Chem., 13 (1), 377–381.

[11] Kjer, J., Wray, V., Edraba-Ebel, R., Ebel, R., Pretsch, A., Lin, W., and Proksch, P., 2009, Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba, J. Nat. Prod., 72 (11), 2053–2057.

[12] Ola, A.R.B., Aly, A.H., Lin, W., Wray, V., and Debbab, A., 2014, Structural revision and absolute configuration of lateritin, Tetrahedron Lett., 55 (45), 6184–6187.

[13] Chen, H., Daletos, G., Okoye, F., Lai, D., Dai, H., and Proksch, P., 2015, A new cytotoxic cytochalasin from the endophytic fungus Trichoderma harzianum, Nat. Prod. Commun., 10 (4), 585–587.

[14] Ashour, M., Edrada, R., Ebel, R., Wray, V., Wätjen, W., Padmakumar, K., and Proksch, P., 2006, Kahalalide derivatives from the Indian sacoglossan mollusk Elysia grandifolia, J. Nat. Prod., 69 (11), 1547–1553.

[15] Oleinikova, G.K., Denisenko, V.A., Slinkina, N.N., and Afiyatullov, S.S., 2012, Secondary metabolites of the marine fungus Aspergillus ustus KMM 4640, Chem. Nat. Compd., 48 (3), 467–469.

[16] Song, X., Luo, M., Huang, H., and Lu, L., 2017, Secondary metabolites of the marine fungus Aspergillus versicolor SCSIO 05772, Chem. Nat. Compd., 53 (2), 354–355.

[17] Song, F., Ren, B., Chen, C., Yu, Ke., Liu, X., Zhang, Y., Yang, N., He, H., Liu, X., Dai, H., and Zhang, L., 2014, Three new sterigmatocystin analogues from marine-derived fungus Aspergillus versicolor MF359, Appl. Microbiol. Biotechnol., 98 (8), 3753–3758.

[18] Lee, J.C., Yang, X., Schwartz, M., Strobel, G., and Clardy, J., 1995, The relationship between an endangered North American tree and an endophytic fungus, Chem. Biol., 2 (11), 721–727.

[19] Venkatasubbaiah, P., and Van Dyke C.G., 1991, Phytotoxins produced by Pestalotiopsis oenotherae, a pathogen of evening primrose, Phytochemistry, 30 (5), 1471–1474.

[20] Bradner, W.T., Bush, J.A., Myllymaki, R.W., Nettleton, D.E., and O’Herron, F.A., 1975, Fermentation, isolation, and antitumor activity of sterigmatocystins, Antimicrob. Agents Chemother., 8 (2), 159–163.

[21] Cai, S., Zhu, T.J., Du, L., Zhao, B., Li, D., and Gu, Q., 2011, Sterigmatocystins from the deep-sea-derived fungus Aspergillus versicolor, J. Antibiot., 64 (2), 193–196.

[22] Evidente, A., Zonno, M.C., Andolfi, A., Troise, C., Cimmino, A., and Vurro, M., 2012, Phytotoxic α-pyrones produced by Pestalotiopsis guepinii, the causal agent of hazelnut twig blight, J. Antibiot., 65 (4), 203–206.

[23] Feng, L., Han, J., Wang, J., Zhang, A.X., Miao, Y.Y., Tan, N.H., and Wang Z., 2020, Pestalopyrones A–D, four tricyclic pyrone derivatives from the endophytic fungus Pestalotiopsis neglecta S3, Phytochemistry, 179, 112505.

[24] Wang, J., Peng, Q., Yao, X., Liu, Y., and Zhou, X., 2020, New pestallic acids and diphenylketone derivatives from the marine alga-derived endophytic fungus Pestalotiopsis neglecta SCSIO41403, J. Antibiot., 73 (8), 585–588.

[25] Almeida, C., Ortega, H., Higginbotham, S., Spadafora, C., Arnold, A.E., Coley, P.D., Kursar, T.A., Gerwick, W.H., and Cubilla-Rios, L., 2014, Chemical and bioactive natural products from Microthyriaceae sp., an endophytic fungus from a tropical grass, Lett. Appl. Microbiol., 59 (1), 58–64.

[26] Han, X., Tang, X., Luo, X., Sun, C., Liu, K., Zhang, Y., Li, P., and Li, G., 2020, Isolation and identification of three new sterigmatocystin derivatives from the fungus Aspergillus versicolor guided by molecular networking approach, Chem. Biodivers., 17 (6), 2000208.

[27] Akone, S.H., Pham, C.D., Chen, H., Ola, A.R.B., Ntie-Kang, F., and Proksch, P., 2019, Epigenetic modification, co-culture and genomic methods for natural product discovery, Phys. Sci. Rev., 4 (4), 0118.

[28] Newman, D.J., and Cragg, G.M., 2015, Endophytic and epiphytic microbes as "sources" of bioactive agents, Front. Chem., 3, 34.



DOI: https://doi.org/10.22146/ijc.63129

Article Metrics

Abstract views : 3556 | views : 1430


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.