λ-MnO2 Thin Films with Sponge-Like Structures: Synthesis, Characterization and Physiochemical Applications

Khalid Abdelazez Mohamed Ahmed(1*)
(1) Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, P.O. Box 12702, Khartoum, Sudan; Department of Chemistry, University College - Khurma, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Shan, R., Lu, L., Gu, J., Zhang, Y., Yuan, H., Chen, Y., and Luo, B., 2020, Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions, Mater. Sci. Semicond. Process.,114, 105088.
[2] Khan, R., Hassan, M.S., Cho, H.S., Polyakov, A.Y., Khil, M.S., and Lee, I.H., 2014, Facile low-temperature synthesis of ZnO nanopyramid and its application to photocatalytic degradation of methyl orange dye under UV irradiation, Mater. Lett., 133, 224–227.
[3] Shen, Y., Wang, W., and Xiao, K., 2016, Synthesis of three-dimensional carbon felt supported TiO2 monoliths for photocatalytic degradation of methyl orange, J. Environ. Chem. Eng., 4 (1), 1259–1266.
[4] Basahel, S.N., Ali, T.T., Mokhtar, M., and Narasimharao, K., 2015, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange, Nanoscale Res. Lett., 10 (1), 73.
[5] Zheng, Q., and Lee, C., 2014, Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3, Electrochim. Acta, 115, 140–145.
[6] Zhang, K., Kim, D., Hu, Z., Park, M., Noh, G., Yang, Y., Zhang, J., Lau, V.W., Chou, S.L., Cho, M., Choi, S.Y., and Kang, Y.M., 2019, Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries, Nat. Commun., 19, 5203–5215.
[7] Misnon, I.I., Aziz, R.A., Zain, N.K.M., Vidhyadharan, B., Krishnan, S.G., and Jose, R., 2014, High performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytes, Mater. Res. Bull., 57. 221–230.
[8] Lao-atiman, W., Julaphatachote, T., Boonmongkolras, P., and Kheawhom, S., 2017, Printed transparent thin film Zn-MnO2 battery, J. Electrochem. Soc., 164 (4), A859.
[9] Suren, S., and Kheawhomm, S., 2016, Development of a high energy density flexible zinc-air battery, J. Electrochem. Soc., 163 (6), A846.
[10] Khamsanga, S., Pornprasertsuk, R., Yonezawa, T., Mohamad, A.A., and Kheawhom, S., 2019, δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries, Sci. Rep., 9 (1), 8441.
[11] Lee., S., Nam, G., Sun, J., Lee, J.S., Lee, H.W., Chen, W., Cho, J., and Cui, Y., 2016, Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation, Angew. Chem. Int. Ed., 55 (30), 8459–8765.
[12] Musil, M., Choi, B., and Tsutsumi, A., 2016, λ-MnO2 positive electrode for fuel cell/battery systems, J. Electrochem. Soc., 163, A2047.
[13] Xue, Y., Chen, Y., Zhang, M.L., and Yan, Y.D., 2008, A new asymmetric supercapacitor based on λ-MnO2 and activated carbon electrodes, Mater. Lett., 62, 3884–3886.
[14] Li, L., Qu, W., Liu, F., Zhao, T., Zhang, X., Chen, R., and Wu, F., 2014, Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries, Appl. Surf. Sci., 315, 59–65.
[15] Yuan, C., Zhang, Y., Pan, Y., Liu, X., Wang, G., and Cao, D., 2014, Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery, Electrochim. Acta, 116, 404–412.
[16] Robinson, D.M., Go, Y.B., Greenblatt, M., and Dismukes, G.C., 2010, Water oxidation by λ-MnO2: Catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4, J. Am. Chem. Soc., 132 (33), 11467–11469.
[17] Liu, N., Mohanapriya, K., Pan, J., Hu, Y., Sun, Y., and Liu, X., 2020, A facile preparation of λ-MnO2 as cathode material for high-performance zinc-manganese redox flow battery, J. Electrochem. Soc., 167 (4), 040517.
[18] Chen, W., Zhan, X., Luo, B., Ou, Z., Shih, P.C., Yao, L., Pidaparthy, S., Patra, A., An, H., Braun, P.V., Stephens, R.M., Yang, H., Zuo, J.M., and Chen, Q., 2019, Effects of particle size on Mg2+ ion intercalation into λ-MnO2 cathode materials, Nano Lett., 19 (7), 4712–4720.
[19] Khan, I., Saeed, K., and Khan, I., 2019, Nanoparticles: Properties, applications and toxicities, Arabian J. Chem., 12 (7), 908–931.
[20] Ahmed, K.A.M., Zeng, Q., Wu, K., and Huang, K., 2010, Mn3O4 nanoplates and nanoparticles: Synthesis, characterization, electrochemical and catalytic properties, J. Solid State Chem., 183 (3), 744–751.
[21] Ahmed, K.A.M., Abbood, H.A., and Huang, K., 2012, Hydrothermal synthesis of Mn(OH)O nanowires and their thermal conversion to (1D)-manganese oxides nanostructures, J. Cryst. Growth, 358, 33–37.
[22] Tang, W., Shan, X., Li, S., Liu, H., Wu, X., and Chen, Y., 2014, Sol-gel process for the synthesis of ultrafine MnO2 nanowires and nanorods, Mater. Lett., 132, 317–321.
[23] Shen, M., Wang, Y., and Zhang, Y.X., 2020, Neatly arranged mesoporous MnO2 nanotubes with oxygen vacancies for electrochemical energy storage, Dalton Trans., 49 (48), 17552–17558.
[24] Zheng, D., Sun, S., Fan, W., Yu, H., Fan, C., Cao, G., Yin, Z., and Song, X., 2005, One-Step Preparation of single crystalline β-MnO2 nanotubes, J. Phys. Chem. B, 109 (34), 16439–16443.
[25] Xu, K., Li, S., Yang, J., and Hu, J., 2018, Hierarchical hollow MnO2 nanofibers with enhanced supercapacitor performance, J. Colloid Interface Sci., 513, 448–454.
[26] Zhao, L., Yu, J., Li, W., Wang, S., Dai, C., Wu, J., Bai, X., and Zhi, C., 2014, Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density, Nano Energy, 4, 39–48.
[27] Greedan, J.E., Raju, N.P., Wills, A.S., Morin, C., Shaw, S.M., and Reimers, J.N., 1998, Structure and magnetism in λ-MnO2 geometric frustration in a defect spinel, Chem. Mater., 10 (10), 3058–3067.
[28] Wang, N., Cao, X., Lin, G., and Shih, Y., 2007, λ-MnO2 nanodisks and their magnetic properties, Nanotechnology, 18, 475605–475608.
[29] Kim, S., Lee, J., Kang, J.S., Jo, K., Kim, S., Sung, Y.E., and Yoon, J., 2015, Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system, Chemosphere, 125, 50–56.
[30] Kim, S., Kang, J.S., Joo, H., Sung, Y.E., and Yoon, J., 2020, Understanding the behaviors of λ-MnO2 in electrochemical lithium recovery: Key limiting factors and a route to the enhanced performance, Environ. Sci. Technol., 54 (14), 9044–9051.
[31] Yuan, Y., and Cheng, L. 2012, Theoretical prediction for the structures of gas phase lithium oxide clusters: (Li2O)n (n = 1–8), Int. J. Quantum Chem., 113 (9), 1264–1271.
[32] Nasrollahzadeh, M.S., Hadavifar, M., Ghasemi, S.S., and Chamjangali, M.A., 2018, Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions, Appl. Water Sci., 8 (4), 104.
[33] Xia, H., Xiao, W., Lai, M.O., and Lu, L., 2009, Facile synthesis of novel nanostructured MnO2 thin films and their application in supercapacitors, Nanoscale Res. Lett., 4 (9), 1035.
[34] Ahmed, K.A.M., Peng, H., Wu, K., and Huang, K., 2011, Hydrothermal preparation of nanostructured manganese oxides (MnOx) and their electrochemical and photocatalytic properties, Chem. Eng. J., 172 (1), 531–539.
[35] Yao, Y., Cai, Y., Wu, G., Wei, F., Li, X., Chen, H., and Wang, S., 2015, Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-like reaction in water, J. Hazard. Mater., 296, 128–137.
[36] Luo, S., Duan, L., Sun, B., Wei, M., Li, X., and Xu, A., 2015, Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate, Appl. Catal., B, 164, 92–99.

Article Metrics


Copyright (c) 2021 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.