Phytochemistry and Pharmacology of Munronia Genus (Meliaceae)

https://doi.org/10.22146/ijc.64502

Kindi Farabi(1), Unang Supratman(2*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia Central Laboratory, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(*) Corresponding Author

Abstract


Munronia is a genus in the Meliaceae family, which consists of over 17 species that are distributed in the subtropical and tropical area of Asia, including southern China, Vietnam, Myanmar, Sri Lanka, India, Indonesia, and the Philippines. It is known that these plants contain valuable bioactive compounds. Since the first isolation of new stigmastane steroid was reported in 2003, researchers have been able to study the chemical composition of these plants, especially the largest secondary metabolite obtained, limonoid. About 97 compounds were isolated successfully and characterized. The reported compounds showed various biological activities, such as antifeedant, antimicrobial, antiangiogenic, cytotoxic against several cancer cell lines, inducing apoptosis, and anti-tobacco mosaic virus activities. Therefore, the results suggest that the use of this plant as a source of bioactive compounds is promising for the medicinal chemistry field.


Keywords


biological activity; limonoid; Meliaceae; Munronia; phytochemistry

Full Text:

Full Text PDF


References

[1] Christenhusz, M.J.M., and Byng, J.W., 2016, The number of known plants species in the world and its annual increase, Phytotaxa, 261 (3), 201–217.

[2] Milawati, H., Harneti, D., Maharani, R., Nurlelasari, Hidayat, A.T., Azmi, M.N., Shiono, Y., and Supratman, U., 2019, Caryophyllen-type sesquiterpenoids from the stembark of Aglaia harmsiana and their cytotoxic activity against MCF-7 breast cancer cells, Molekul, 14 (2), 126–132.

[3] Pan, L., Acuña, U.M., Li, J., Jena, N., Ninh, T.N., Pannel, C.M., Chai, H., Fuchs, J.R., Carcache de Blanco, E.J., Soejarto, D.D., and Kinghorn, D., 2013, Bioactive flavaglines and other constituents isolated from Aglaia perviridis, J. Nat. Prod., 76 (3), 394–404.

[4] Liu, S., Liu, S.B., Zuo, W., Guo, Z., Mei, W., and Dai, H., 2014, New sesquiterpenoids from Aglaia odorata var. Microphyllina and their cytotoxic activity, Fitoterapia, 92, 93–99.

[5] Kurniasih, N., Milawati, H., Fajar, M., Hidayat, A.T., Abdullah, R., Harneti, D., Supratman, U., and Azmi, M.N., 2018, Sesquiterpenoid compounds from the stembark of Aglaia minahassae (Meliaceae), Molekul, 13 (1), 56–62.

[6] Phongmaykin, J., Kumamoto, T., Ishikawa, T., Suttisri, R., and Saifah, E., 2008, A new sesquiterpene and other terpenoid constituents of Chisocheton penduliflorus, Arch. Pharmacal Res., 31 (1), 21–27.

[7] Yang, M.H., Wang, J.S., and Kong, L.Y., 2012, Chemical constituents of Chisocheton cumingianus, Chin. J. New Drugs, 21, 555–560.

[8] Awang, K., Loong, X.M., Leong, K.H., Supratman, U., Litaudon, M., Mukhtar, M.R., and Mohamad, K., 2012, Triterpenes and steroids from the leaves of Aglaia exima (Meliaceae), Fitoterapia, 83 (8), 1391–1395.

[9] Yodsaoue, O., Sonprasit, J., Karalai, C., Ponglimanont, C., Tewtrakul, S., and Chantrapromma, S., 2012, Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata, Phytochemistry, 76, 83–91.

[10] Zhang, H., Xu, H.H., Song, Z.J., Chen, L.Y., and Wen, H.J., 2012, Molluscidal activity of Aglaia duperreana and the constituents of its twigs and leaves, Fitoterapia, 83 (6), 1081–1086.

[11] Harneti, D., Tjokronegoro, R., Safari, A., Supratman, U., Loong, X.M., Mukhtar, M.R., Mohamad, K., Awang, K., and Hayashi, H., 2012, Cytotoxic triterpenoids from the bark of Aglaia smithii (Meliaceae), Phytochem. Lett., 5 (3), 496–499.

[12] Harneti, D., Supriadin, S., Ulfah, M., Safari, A., Supratman, U., Awang, K., and Hayashi, H., 2014, Cytotoxic constituents from the bark of Aglaia eximia (Meliaceae), Phytochem. Lett., 8, 28–31.

[13] Hidayat, A.T., Farabi, K., Harneti, H., Nurlelasari, Maharani, R., Nurfarida, I., Supratman, U., and Shiono, Y., 2018, Cytotoxic triterpenoids from the stembark of Aglaia argentea (Meliaceae), Indones. J. Chem., 18 (1), 35–42.

[14] Zhang, F., He, X.F., Wu, W.B., Chen, W.S., and Yue, J.M., 2012, New apotirucallane-type triterpenoids from Chisocheton paniculatus, Nat. Prod. Bioprospect., 2 (6), 235–239.

[15] Yang, M.H., Wang, J.S., Luo, J.G., Wang, X.B., and Kong, L.Y., 2012, Four new triterpenoids from Chisocheton paniculatus and their anti-inflammatory activities, Can. J. Chem., 90 (2), 199–204.

[16] Yang, M.H., Wang, J.S., Luo, J.G., Wang, X.B., and Kong, L.Y., 2012, Tetranortriterpenoids from Chisocheton paniculatus, J. Nat. Prod., 75 (2), 308.

[17] Chan, K.Y., Mohamad, K., Ooi, A.J.A., Imiyabir, Z., and Chung, L.Y., 2012, Bioactivity-guided fractionation of the lipoxygenase and cyclooxygenase inhibiting constituents from Chisocheton polyandrus Merr, Fitoterapia, 83 (5), 961–967.

[18] Najmuldeen, I.A., Hadi, A.H.A., Mohamad, K., Awang, K., Nasab, M.F., Ketuly, K.A., Mukhtar, M.R., and Morita, H., 2011, Steroids from Chisocheton tomentosus, Malays. J. Sci., 30 (2), 144–153.

[19] Liu, J., He, X.F., Wang, G.H., Merino, E.F., Yang, S.P., Zhu, R.X., Gan, L.S., Zhang, H., Cassera, M.B., Wang, H.Y., Kingston, D.G.I., and Yue, J.M., 2014, Aphadilactones A–D, four diterpenoid dimers with DGAT inhibitory and antimalarial activities from a Meliaceae plant, J. Org. Chem., 79 (2), 599–607.

[20] Zhang, W.M., Liu, J.Q., Deng, Y.Y., Xia, J.J., Zhang, Z.R., Li, Z.R., and Qiu, M.H., 2014, Diterpenoids and limonoids from the leaves and twigs of Swietenia mahagoni, Nat. Prod. Bioprospect., 4 (1), 53–57.

[21] Zhang, X., Tan, Y., Li, Y., Jin, L., Wei, N., Wu, H., Ma, G., Zheng, Q., Tian, Y., Yang, J., Zhang, J., and Xu, X., 2014, Aphanamixins A-F, acyclic diterpenoids from the stem bark of Aphanamixis polystachya, Chem. Pharm. Bull., 62 (5), 494–498.

[22] Farabi, K., Harneti, D., Nurlelasari, Maharani, R., Hidayat, A.C., Supratman, U., Awang, K., and Shiono, Y., 2017, Cytotoxic steroids from the bark of Aglaia argentea (Meliaceae), CMU J. Nat. Sci., 16 (4), 293–306.

[23] Farabi, K., Harneti, D., Nurlelasari, Maharani, R., Hidayat, A.C., Awang, K., Supratman, U., and Shiono, Y., 2018, New cytotoxic pregnane-type steroid from the stem bark of Aglaia elliptica (Meliaceae), Rec. Nat. Prod., 12 (2), 121–127.

[24] Hutagaol, R.P., Harneti, D., Hidayat, A.T., Nurlelasari, Maharani, R., Katja, D.G., Supratman, U., Awang, K., and Shiono, Y., 2020, (22E,24S)-24-Propylcholest-5en-3α-acetate: A new steroid from the bark Aglaia angustifolia (Miq.) (Meliaceae), Molbank, 2020 (1), M1112.

[25] Awang, K., Loong, X.M., Leong, K.H., Supratman, U., Litaudon, M., Mukhtar, M.P., and Mohamad, K., 2012, Triterepenes and steroids from the leaves of Aglaia exima (Meliaceae), Fitoterapia, 83 (8), 1391–1395.

[26] Farabi, K., Harneti, D., Nurlelasari, Maharani, R., Hidayat, A.C., Awang, K., Supratman, U., and Shiono, Y., 2017, New cytotoxic protolimonoids from the stem bark of Aglaia argentea (Meliaceae), Phytochem. Lett., 21, 211–215.

[27] Fang, X., Di, Y.T., and Hao, X.J., 2011, The advances in the limonoid chemistry of the Meliaceae family, Curr. Org. Chem., 15 (9), 1363–1391.

[28] Sianturi, J., Purnamasari, M., Darwati, Harneti, D., Mayanti, D., Supratman, U., Awang, K., and Hayashi, H., 2015, New bisamide compounds from the bark of Aglaia eximia (Meliaceae), Phytochem. Lett., 13, 297–301.

[29] Duong, T.N., Edrada, R.A., Ebel, R., Wray, V., Frank, W., Duong, A.T., Lin, W.H., and Proksch, P., 2007, Putrescine bisamides from Aglaia gigantea, J. Nat. Prod., 70 (10), 1640–1643.

[30] Sianturi, J., Harneti, D., Darwati, Mayanti, T., Supratman, U., and Awang, K., 2016, A new (-)-5’,6-dimethoxyisolariciresinol-(3’’,4’’-dimethoxy)-3α-O-β-D-glucopyranosides from the bark of Aglaia eximia (Meliaceae), Nat. Prod. Res., 30 (19), 2204–2208.

[31] Hidayat, A.T., Nurlelasari, N., Abdullah, F.F., Harneti, D., Maharani, R., Haikal, K., Supratman, U., and Azmi, M.N.A., 2018, New lignan derivative, lasiocarpone, from the stembark of Chisocheton lasiocarpus (Meliaceae), Orient. J. Chem., 34 (4), 1956–1960.

[32] Peng, L., Fu, W.X., Zeng, C.X., Zhou, L., Bao, M.F., and Cai, X.H., 2016, Two new lignans from twigs of Aglaia odorata, J. Asian Nat. Prod. Res., 18 (2), 147–152.

[33] Joycharat, N., Greger, H., Hofer, O., and Saifah, E., 2008, Flavaglines and triterpenoids from the leaves of Aglaia forbesii, Phytochemistry, 69 (1), 206–211.

[34] Pan, L., Woodard, J.L., Lucas, D.M., Fuchs, J.R., and Kinghorn, A.D., 2014, Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species, Nat. Prod. Rep., 31 (7), 924–939.

[35] An, F.L., Wang, X.B., Wang, H., Li, Z.R., Yang, M.H., Luo, J., and Kong, L.Y., 2016, Cytotoxic rocaglate derivatives from leaves of Aglaia perviridis, Sci. Rep., 6, 20045.

[36] Sianturi, J., Purnamasari, M., Mayanti, T., Harneti, D., Supratman, U., Awang, K., and Hayashi, H., 2015, Flavonoid compounds from the bark of Aglaia eximia (Meliaceae), Makara J. Sci., 19 (1), 7–12.

[37] Sianturi, J., Farabi, K., Mayanti, T., Harneti, D., Darwati, Supratman, U., Awang, K., and Hayashi, H., 2016, Antioxidant constituents from the bark of Aglaia eximia (Meliaceae), Makara J. Sci., 20 (1), 1–6.

[38] Salim, A.A., Chai, H.B., Rachman, I., Riswan, S., Kardono, L.B.S., Farnsworth, N.R., Carcache-Blanco, E.J., and Kinghorn, A.D., 2007, Constituents of the leaves and stem bark of Aglaia foveolata, Tetrahedron, 63 (33), 7926–7934.

[39] Kim, S., Chin, Y.W., Su, B.N., Riswan, S., Kardono, L.B.S., Afriastini, J.J., Chai, H., Farnsworth, N.R., Cordell, G.A., Swanson, S.M., and Kinghorn, A.D., 2006, Cytotoxic flavaglines and bisamides from Aglaia edulis, J. Nat. Prod., 69 (12), 1769–1775.

[40] Wu, T.S., Liou, M.J., Kuoh, C.S., Teng, C.M., Nagao, T., and Lee, K.H., 1997, Cytotoxic and antiplatelet aggregation priciples from Aglaia elliptifolia, J. Nat. Prod., 60 (6), 606–608.

[41] Mohamad, K., Sévenet, T., Dumontet, V., Paı̈s, M., Tri, M.V., Hadi, H., Awang, K., and Martin, M.T., 1999, Dammarane triterpenes and pregnane steroids from Aglaia lawii and A. tomentosa, Phytochemistry, 51 (8), 1031–1037.

[42] Dreyer, M., Nugroho, B.W., Bohnenstengel, F.I., Ebel, R., Wray, V., Witte, L., Bringmann, G., Mühlbacher, J., Herold, M., Hung, D., Kiet, C., and Proksch, P., 2001, New insecticidal rocaglamide derivatives and related compounds from Aglaia oligophylla, J. Nat. Prod., 64 (4), 415–420.

[43] Greger, H., Pacher, T., Brem, B., Bacher, M., and Hofer, O., 2001, Insecticidal flavaglines and other compounds from Fijian Aglaia species, Phytochemistry, 57 (1), 57–64.

[44] Fuzzati, N., Dyatmiko, W., Rahman, A., Achmad, F., and Hostettmann, K., 1996, Triterpenoids, lignans and a benzofuran derivative from the bark of Aglaia elaeagnoidea, Phytochemistry, 42 (5), 1395–1398.

[45] Engelmeier, D., Hadacek, F., Pacher, T., Vajrodaya, S., and Greger, H., 2000, Cyclopenta[b]benzofurans from Aglaia species with pronounced antifungal activity against rice blast fungus (Pyricularia grisea), J. Agric. Food Chem., 48 (4), 1400–1404.

[46] Chin, Y.W., Chae, H.S., Lee, J.K., Bach, T.T., Ahn, K.S., Lee, H.K., Joung, H., and Oh, S.R., 2010, Bisamides from the twigs of Aglaia perviridis collected in Vietnam, Bull. Korean Chem. Soc., 31 (9), 2665–2667.

[47] Yadav, R.D., Kataky, J.C.S., and Mathur, R.K., 1999, New protolimonoids and limonoids: Part I-Isolation, structure elucidation of new protolimonoids and limonoid from the root wood of Chisocheton paniculatus Hiern (Meliaceae), Indian J. Chem., Sect. B, 38, 1359–1363.

[48] Saifah, E., Suttisri, R., Shamsub, S., Pengsuparp, T., and Lipipun, V., 1999, Bisamides from Aglaia edulis, Phytochemistry, 52 (6), 1085–1088.

[49] Zhang, R.J., Chen, H.F., Xing, F.W., and Ye, Y.S., 2009, Munronia yinggelingensis sp. nov. (Meliaceae) from Hainan, China, Nord. J. Bot., 27 (5), 376–378.

[50] Chen, P.Y., 1997, “Meliaceae” in Angiospermae: Dicotyledoneae, Simaroubaceae, Burseraceae, Meliaceae, Malpighiaceae, Polygalaceae, Dichapetalaceae, Eds. Chen, S.K., Science Press, Beijing, China, 34–104.

[51] Qi, S.H., Chen, L., Wu, D.G., Maa, W.B., and Luo, X.D., 2003, Novel tetranortriterpenoid derivatives from Munronia henryi, Tetrahedron, 59 (23), 4193–4199.

[52] Jia, J., Wu, H., Wang, J.F., and Gong, J.F.X., 2014, Genetic diversity and structure of Munronia delavayi Franch. (Meliaceae), an endemic species in the dry-hot valley of Jinsha River, south-western China, Genet. Resour. Crop Evol., 61 (7), 1381–1395.

[53] Dassanayake, M.D., Fosberg, F.R., and Clayton, W.D., 1995, A Revised Handbook to the Flora of Ceylon, Vol. 9, Amerind Publishing Co. Pvt. Ltd., New Delhi, India.

[54] Dharmadasa, R.M., Hettiarachchi, P.L., and Premakumara, G.A.S., 2011, Geographical distribution and conservation of a rare medicinal plant Munronia pinnata (Wall.) Theob. (Meliaceae) in Sri Lanka, Bangladesh J. Plant Taxon., 18 (1), 39–49.

[55] Jayaweera, D.M.A., 1982, Medicinal Plants (Indigenous and Exotic) Used in Ceylon, Part 4, National Science Council of Sri Lanka, Colombo, Sri Lanka.

[56] Arambewela, L., and Wijesinghe, A., 2006, Sri Lankan Medicinal Plant Monographs and Analysis – Vol. 12 Munronia pumila, National Science Foundation, Colombo, Sri Lanka.

[57] Qi, S.H., Wu, D.G., Ma, Y.B., and Luo, X.D., 2003, The chemical constituents of Munronia henryi, J. Asian Nat. Prod. Res., 5 (3), 215–221.

[58] Pennington, T.D., and Styles, B.T., 1975, A generic monograph of the Meliaceae, Blumea, 22 (3), 419–540.

[59] Cai, X.H., Luo, X.D., Zhou, J., and Hao, X.J., 2006, A new pregnane from Munronia delavayi Franch (Meliaceae), J. Integr. Plant Biol., 48 (9), 1126−1128.

[60] Cai, X.H., Du, Z.Z., and Luo, X.D., 2007, Tirucallane triterpenoid saponins from Munronia delavayi Franch, Helv. Chim. Acta, 90 (10), 1980−1986.

[61] Yan, Y., Yuan, C.M., Di, Y.T., Huang, T., Fan, Y.M., Ma, Y., Zhang, J.X., and Hao, X.J., 2015, Limonoids from Munronia henryi and their anti-tobacco mosaic virus activity, Fitoterapia, 107, 29−35.

[62] Zhang, Y., and Xu, H., 2017, Recent progress in the chemistry and biology of limonoids, RSC Adv., 7 (56), 35191−35220.

[63] Roy, A., and Saraf, S., 2006, Limonoids: Overview of significant bioactive triterpenes distributed in plants kingdom, Biol. Pharm. Bull., 29 (2), 191−201.

[64] Taylor, D.A.H., 1984, “The Chemistry of the Limonoids from Meliaceae” in ‘Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products”, vol. 45, Springer, Vienna, Austria.

[65] Zhang, H.P., Bao, G.H., Wang, H.B., and Qin, G.W., 2004, Two new limonoids from Munronia henryi, Nat. Prod. Res., 18 (5), 415–419.

[66] Lin, B.D., Chen, H.D., Liu, J., Zhang, S., Wu, Y., Dong, L., and Yue, J.M., 2010, Mulavanins A–E: Limonoids from Munronia delavayi, Phytochemistry, 71 (13), 1596–1601.

[67] Li, X.L., He, Q.X., Zhang, F.L., Zhao, Y.L., Liu, K.C., and Jiang, S.P., 2012, Chemical constituents from Munronia sinica and their bioactivities, Nat. Prod. Bioprospect., 2 (2), 76–80.

[68] Ge, Y.H., Zhang, J.X., Mu, S.Z., Chen, Y., Yang, F.M., Lű, Y., and Hao, X.J., 2012, Munronoids A-J, ten new limonoids from Munronia unifoliolata Oliv, Tetrahedron, 68 (2), 566−572.

[69] Ge, Y.H., Liu, K.X., Zhang, J.X., Mu, S.Z., and Hao, X.J., 2012, The limonoids and their anti-tobacco mosaic virus (TMV) activities from Munronia unifoliolata Oliv, J. Agric. Food Chem., 60 (17), 4289−4295.

[70] Yan, Y., Zhang, J.X., Huang, T., Mao, X.Y., Gu, W., He, H.P., Di, Y.T., Li, S.L., Chen, D.Z., Zhang, Y., and Hao, X.J., 2015, Bioactive limonoid constituents of Munronia henryi, J. Nat. Prod., 78 (4), 811–821.

[71] Yang, X.R., Tanaka, N., Tsuji, D., Lu, F.L., Yan, X.J., Itoh, K., Li, D.P., and Kashiwada, Y., 2019, Limonoids from the aerial parts of Munronia pinnata, Tetrahedron, 75 (52), 130779.

[72] Qi, S.H., Wu, D.G., Chen, L., Ma, Y.B., and Luo, X.D., 2003, Insect antifeedants from Munronia henryi: Structure of Munroniamide, J. Agric. Food Chem., 51 (24), 6949–6952.



DOI: https://doi.org/10.22146/ijc.64502

Article Metrics

Abstract views : 1779 | views : 1591


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.