Electrogenerated Chemiluminescence for Immunoassay Applications


Isnaini Rahmawati(1), Irkham Irkham(2), Rahmat Wibowo(3), Jarnuzi Gunlazuardi(4), Yasuaki Einaga(5), Tribidasari Anggraningrum Ivandini(6*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(2) Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Yokohama, 223-8522, Japan
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(5) Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Yokohama, 223-8522, Japan
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(*) Corresponding Author


Electrogenerated chemiluminescence (ECL) has recently become one of the most prominent and well-established transducers for immunoassay techniques. ECL relates a luminophore concentration in solution with the emission of light triggered by an electrochemical stimulus. ECL immunoassay (ECLIA) performance depends on the parameters of its light generation, including the luminophore, the species that emit light called labels in ECLIA; co-reactants, which are added reagents that support the luminophore to undergo the excited state; electrodes, which are the place for the ECL reactions to take place; and the format of the immunoassay. This review discusses the behaviour of ECLIA parameters, the required instrumentations, and some important examples of detections based on ECLIA.


antibody; antigen; electrochemiluminescence; ECL; ECLIA; Immunoassay

Full Text:

Full Text PDF


[1] Irkham, Fiorani, A., Valenti, G., Kamoshida, N., Paolucci, F., and Einaga, Y., 2020, Electrogenerated chemiluminescence by in situ production of coreactant hydrogen peroxide in carbonate aqueous solution at a boron-doped diamond electrode, J. Am. Chem. Soc., 142 (3), 1518–1525.

[2] Miao, W., 2008, Electrogenerated chemiluminescence and its biorelated applications, Chem. Rev., 108 (7), 2506–2553.

[3] Dennany, L., 2019, “Electrochemiluminescence Fundamentals and Analytical Applications” in Electrochemistry: Volume 15, Eds. Banks, C., and McIntosh, S., The Royal Society of Chemistry, 96–146.

[4] Fiorani, A., Valenti, G., Iurlo, M., Marcaccio, M., and Paolucci, F., 2018, Electrogenerated chemiluminescence: A molecular electrochemistry point of view, Curr. Opin. Electrochem., 8, 31–38.

[5] Richter, M.M., 2004, Electrochemiluminescence (ECL), Chem. Rev., 104 (6), 3003–3036.

[6] Gross, E.M., Maddipati, S.S., and Snyder, S.M., 2016, A review of electrogenerated chemiluminescent biosensors for assays in biological matrices, Bioanalysis, 8 (19), 2071–2089.

[7] Muzyka, K., 2014, Current trends in the development of the electrochemiluminescent immunosensors, Biosens. Bioelectron., 54, 393–407.

[8] Vashist, S.K., and Luong, J.H.T., 2018, “Chapter 1 –Immunoassays: An Overview” in Handbook of Immunoassay Technologies, Academic Press, 1–18.

[9] Bouffier, L., and Sojic, N., 2019, “Chapter 1. Introduction and Overview of Electrogenerated Chemiluminescence” in Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays, Eds. Sojic, N., The Royal Society of Chemistry, 1–28.

[10] Valenti, G., Fiorani, A., Li, H., Sojic, N., and Paolucci, F., 2016, Essential role of electrode materials in electrochemiluminescence applications, ChemElectroChem, 3 (12), 1990–1997.

[11] Peng, S., and Zhang, X., 2012, Electrodeposition of CdSe quantum dots and its application to an electrochemiluminescence immunoassay for α-fetoprotein, Microchim. Acta, 178 (3), 323–330.

[12] Li, F., Yu, Y., Cui, H., Yang, D., and Bian, Z., 2013, Label-free electrochemiluminescence immunosensor for cardiac troponin I using luminol functionalized gold nanoparticles as a sensing platform, Analyst, 138 (6), 1844–1850.

[13] Yue, H., He, Y., Fan, E., Wang, L., Lu, S., and Fu, Z., 2017, Label-free electrochemiluminescent biosensor for rapid and sensitive detection of Pseudomonas aeruginosa using phage as highly specific recognition agent, Biosens. Bioelectron., 94, 429–432.

[14] Sun, C., Liao, X., Jia, B., Shi, L., Zhang, D., Wang, R., Zhou, L., and Kong, W., 2020, Development of a ZnCdS@ZnS quantum dots–based label-free electrochemiluminescence immunosensor for sensitive determination of aflatoxin B1 in lotus seed, Microchim. Acta, 187 (4), 236.

[15] Shu, J., Shen, W., and Cui, H., 2015, Ultrasensitive label-free electrochemiluminescence immunosensor based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized graphene composite, Sci. China Chem., 58 (3), 425–432.

[16] Rizwan, M., Mohd-Naim, N.F., Keasberry, N.A., and Ahmed, M.U., 2017, A highly sensitive and label-free electrochemiluminescence immunosensor for beta 2-microglobulin, Anal. Methods, 9 (17), 2570–2577.

[17] Yue, H., Zhou, Y., Wang, P., Wang, X., Wang, Z., Wang, L., and Fu, Z., 2016, A facile label-free electrochemiluminescent biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A, Talanta, 153, 401–406.

[18] Hou, F., Fu, X.L., Hu, X.B., Cao, J.T., Ma, S.H., and Liu, Y.M., 2020, Label-free electrochemiluminescence immunosensor for the determination of cardiac troponin I using a cadmium sulfide–molybdenum (IV) sulfide nanocomposite modified glassy carbon electrode, Anal. Lett., 53 (9), 1416–1427.

[19] Ma, H., Zhao, Y., Li, L., Wang, H., and Wei, Q., 2018, Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on mesoporous graphite-like carbon nitride, Talanta, 188, 729–735.

[20] Wu, D., Liu, Y., Wang, Y., Hu, L., Ma, H., Wang, G., and Wei, Q., 2016, Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots, Sci. Rep., 6, 20511.

[21] Miao, W., and Lu, L., 2019, “Chapter 3. Efficient ECL Luminophores” in Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays, Eds. Sojic, N., The Royal Society of Chemistry, 59–91.

[22] Liu, Z., Qi, W., and Xu, G., 2015, Recent advances in electrochemiluminescence, Chem. Soc. Rev., 44 (10), 3117–3142.

[23] Tokel, N.E., and Bard, A.J., 1972, Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2’-bipyridine)ruthenium(II) dichloride, J. Am. Chem. Soc., 94 (8), 2862–2863.

[24] Miao, W., Choi, J., and Bard, A.J., 2002, Electrogenerated chemiluminescence 69: The tris(2,2‘-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited – A new route involving TPrA•+ cation radicals, J. Am. Chem. Soc., 124 (48), 14478–14485.

[25] Liu, X., Shi, L., Niu, W., Li, H., and Xu, G., 2007, Environmentally friendly and highly sensitive ruthenium(II) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant, Angew. Chem. Int. Ed., 46 (3), 421–424.

[26] White, H.S., and Bard, A.J., 1982, Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,21-bpy)32+-S2O82– system in acetonitrile-water solutions, J. Am. Chem. Soc., 104 (25), 6891–6895.

[27] Choi, J., and Bard, A.J., 2005, Electrogenerated chemiluminescence (ECL) 79.: Reductive-oxidation ECL of tris(2,2′-bipyridine)ruthenium(II) using hydrogen peroxide as a coreactant in pH 7.5 phosphate buffer solution, Anal. Chim. Acta, 541 (1-2), 141–148.

[28] Acharya, D., Bastola, P., Le, L., Paul, A.M., Fernandez, E., Diamond, M.S., Miao, W., and Bai, F., 2016, An ultrasensitive electrogenerated immunoassay for specific detection of Zika virus, Sci. Rep., 6 (1), 32227.

[29] Chen, L., Hayne, D.J., Doeven, E.H., Agugiaro, J., Wilson, D.J.D., Henderson, L.C., Connell, T.U., Nai, Y.H., Alexander, R., Carrara, S., Hogan, C.F., Donnelly, P.S., and Francis, P.S., 2019, A conceptual framework for the development of iridium(III) complex-based electrogenerated chemiluminescence labels, Chem. Sci., 10 (37), 8654–8667.

[30] Staffilani, M., Höss, E., Giesen, U., Schneider, E., Hartl, F., Josel, H.P., and De Cola, L., 2003, Multimetallic ruthenium(II) complexes as electrochemiluminescent labels, Inorg. Chem., 42 (24), 7789–7798.

[31] Yu, L., Liu, Y., and Zhou, M., 2016, Improved electrochemiluminescence labels for heterogeneous microbead immunoassay, Anal. Bioanal. Chem., 408 (25), 7095–7103.

[32] Kim, J.I., Shin, I.S., Kim, H., and Lee, J.K., 2005, Efficient electrogenerated chemiluminescence from cyclometalated iridium(III) complexes, J. Am. Chem. Soc., 127 (6), 1614–1615.

[33] Kapturkiewicz, A., Nowacki, J., and Borowicz, P., 2005, Electrochemiluminescence studies of the cyclometalated iridium(III) L2Ir(acetyl acetonate) complexes, Electrochim. Acta, 50 (16-17), 3395–3400.

[34] Muegge, B.D., and Richter, M.M., 2004, Multicolored electrogenerated chemiluminescence from ortho-metalated iridium(III) systems, Anal. Chem., 76 (1), 73–77.

[35] Kapturkiewicz, A., and Angulo, G., 2003, Extremely efficient electrochemiluminescence systems based on tris(2-phenylpyridine)iridium(III), Dalton Trans., 20, 3907–3913.

[36] Zhou, Y., Li, W., Yu, L., Liu, Y., Wang, X., and Zhou, M., 2015, Highly efficient electrochemiluminescence from iridium(III)) complexes with 2-phenylquinoline ligand, Dalton Trans., 44 (4), 1858–1865.

[37] Shin, I.S., Yoon, S., Kim, J.I., Lee, J.K., Kim, T.H., and Kim, H., 2011, Efficient green-colored electrochemiluminescence from cyclometalated iridium(III) complex, Electrochim. Acta, 56 (17), 6219–6223.

[38] Kapturkiewicz, A., 2016, Cyclometalated iridium(III) chelates–A new exceptional class of the electrochemiluminescent luminophores, Anal. Bioanal. Chem., 408 (25), 7013–7033.

[39] Dennany, L., Forster, R.J., White, B., Smyth, M., and Rusling, J.F., 2004, Direct electrochemiluminescence detection of oxidized DNA in ultrathin films containing [Os(bpy)2(PVP)10]2+, J. Am. Chem. Soc., 2 (20), 8835–8841.

[40] Staninski, K., Lis, S., and Komar, D., 2006, Electrochemiluminescence on Dy(III) and Tb(III)-doped Al/Al2O3 surface electrode, Electrochem. Commun., 8 (7), 1071–1074.

[41] Yang, Y., Zhang, Y., Shu, G., Dong, Q., Zou, L., and Zhu, Y., 2015, Electrochemiluminescence properties of Tb(III) nicotinic acid complex and its analytical application, J. Lumin., 159, 73–78.

[42] Staninski, K., and Lis, S., 2011, Ultraweak emission of the Eu(III) ions in cathodic generated electrochemiluminescence, Opt. Mater., 33 (10), 1540–1543.

[43] Lis, S., Staninski, K., and Grzyb, T., 2008, Electrochemiluminescence study of europium(III) complex with coumarin3-carboxylic acid, Int. J. Photoenergy, 2008, 131702.

[44] Xiang, G., Wang, X., Li, M.S.M., Lac, K., Wang, S., and Ding, Z., 2017, Probing excimers of Pt(II) compounds with phenyl-1,2,3-triazolyl and pyridyl-1,2,4-triazolyl chelate ligands by means of electrochemiluminescence, ChemElectroChem, 4 (7), 1757–1762.

[45] Dick, J.E., Renault, C., Kim, B.K., and Bard, A.J., 2014, Electrogenerated chemiluminescence of common organic luminophores in water using an emulsion system, J. Am. Chem. Soc., 136 (39), 13546–13549.

[46] Liu, J.L., Tang, Z.L., Zhang, J.Q., Chai, Y.Q., Zhuo, Y., and Yuan, R., 2018, Morphology-controlled 9,10-diphenylanthracene nanoblocks as electrochemiluminescence emitters for microRNA detection with one-step DNA walker amplification, Anal. Chem., 90 (8), 5298–5305.

[47] Zholudov, Y.T., and Xu, G., 2018, Electrogenerated chemiluminescence at a 9,10-diphenylanthracene/polyvinyl butyral film modified electrode with a tetraphenylborate coreactant, Analyst, 143 (14), 3425–3432.

[48] Zhang, Y., Zhang, R., Yang, X., Qi, H., and Zhang, C., 2019, Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals, J. Pharm. Anal., 9 (1), 9–19.

[49] Fang, C., Li, H., Yan, J., Guo, H., and Yifeng, T., 2017, Progress of the electrochemiluminescence biosensing strategy for clinical diagnosis with luminol as the sensing probe, ChemElectroChem, 4 (7), 1587–1593.

[50] Garcia-Segura, S., Centellas, F., and Brillas, E., 2012, Unprecedented electrochemiluminescence of luminol on a boron-doped diamond thin-film anode. Enhancement by electrogenerated superoxide radical anion, J. Phys. Chem. C, 116 (29), 15500–15504.

[51] Xiuhua, W., Chao, L., and Yifeng, T., 2012, Microemulsion-enhanced electrochemiluminescence of luminol-H2O2 for sensitive flow injection analysis of antioxidant compounds, Talanta, 94, 289–294.

[52] Huang, Y., Lei, J., Cheng, Y., and Ju, H., 2016, Ratiometric electrochemiluminescent strategy regulated by electrocatalysis of palladium nanocluster for immunosensing, Biosens. Bioelectron., 77, 733–739.

[53] Forster, R.J., 2019, “Chapter 9. ECL of Nanomaterials: Novel Materials, Detection Strategies and Applications” in Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays, Eds. Sojic, N., The Royal Society of Chemistry, 247–273.

[54] Ding, Z., Quinn, B.M., Haram, S.K., Pell, L.E., Korgel, B.A., and Bard, A.J., 2002, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots, Science, 296 (5571), 1293–1297.

[55] Algar, W.R., Tavares, A.J., and Krull, U.J., 2010, Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction, Anal. Chim. Acta, 673 (1), 1–25.

[56] Yuan, Y., Li, J., and Xu, G., 2019, “Chapter 4. Electrochemiluminescence Coreactants” in Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays, Eds. Sojic, N., The Royal Society of Chemistry, 92–133.

[57] Chang, M.M., Saji, T., and Bard, A.J., 1977, Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions, J. Am. Chem. Soc., 99 (16), 5399–5403.

[58] Cao, Y., Yuan, R., Chai, Y., Mao, L., Niu, H., Liu, H., and Zhuo, Y., 2012, Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling, Biosens. Bioelectron., 31 (1), 305–309.

[59] Xiao, L., Chai, Y., Yuan, R., Cao, Y., Wang, H., and Bai, L., 2013, Amplified electrochemiluminescence of luminol based on hybridization chain reaction and in situ generate co-reactant for highly sensitive immunoassay, Talanta, 115, 577–582.

[60] Asai, K., Ivandini, T.A., Falah, M.M., and Einaga, Y., 2016, Surface termination effect of boron-doped diamond on the electrochemical oxidation of adenosine phosphate, Electroanalysis, 28 (1), 177–182.

[61] Ivandini, T.A., Watanabe, T., Matsui, T., Ootani, Y., Iizuka, S., Toyoshima, R., Kodama, H., Kondoh, H., Tateyama, Y., and Einaga, Y., 2019, Influence of surface orientation on electrochemical properties of boron-doped diamond, J. Phys. Chem. C, 123 (9), 5336–5344.

[62] Irkham, Watanabe, T., Fiorani, A., Valenti, G., Paolucci, F., and Einaga, Y., 2016, Co-reactant-on-demand ECL: Electrogenerated chemiluminescence by the in situ production of S2O82– at boron-doped diamond electrodes, J. Am. Chem. Soc., 138 (48), 15636–15641.

[63] Valenti, G., Fiorani, A., Villani, E., Zanut, A., and Paolucci, F., 2019, “Chapter 6. The Essential Role of Electrode Materials in ECL Applications” in Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays, Eds. Sojic, N., The Royal Society of Chemistry, 159–175.

[64] Zu, Y., and Bard, A.J., 2000, Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2′) bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity, Anal. Chem., 72 (14), 3223–3232.

[65] Kitte, S.A., Wang, C., Li, S., Zholudov, Y., Qi, L., Li, J., and Xu, G., 2016, Electrogenerated chemiluminescence of tris(2,2’-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant, Anal. Bioanal. Chem., 408 (25), 7059–7065.

[66] Zanut, A., Fiorani, A., Canola, S., Saito, T., Ziebart, N., Rapino, S., Rebeccani, S., Barbon, A., Irie, T., Josel, H.P., Negri, F., Marcaccio, M., Windfuhr, M., Imai, K., Valenti, G., and Paolucci, F., 2020, Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance, Nat. Commun., 11 (1), 1–9.

[67] Fiorani, A., Merino, J.P., Zanut, A., Criado, A., Valenti, G., Prato, M., and Paolucci, F., 2019, Advanced carbon nanomaterials for electrochemiluminescent biosensor applications, Curr. Opin. Electrochem., 16, 66–74.

[68] Mortet, V., Vlčková Živcová, Z., Taylor, A., Frank, O., Hubík, P., Trémouilles, D., Jomard, F., Barjon, J., and Kavan, L., 2017, Insight into boron-doped diamond Raman spectra characteristic features, Carbon, 115, 279–284.

[69] Valenti, G., Zangheri, M., Sansaloni, S.E., Mirasoli, M., Penicaud, A., Roda, A., and Paolucci, F., 2015, Transparent carbon nanotube network for efficient electrochemiluminescence devices, Chem. Eur. J., 21 (36), 12640–12645.

[70] Hogan, C.F., Francis, P.S., and Doeven, E.H., 2019, “Chapter 8. Multicolour Electrochemiluminescence” in Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays, Eds. Sojic, N., The Royal Society of Chemistry, 200–246.

[71] Fiorani, A., Irkham, Valenti, G., Paolucci, F., and Einaga, Y., 2018, Electrogenerated chemiluminescence with peroxydisulfate as a coreactant using boron doped diamond electrodes, Anal. Chem., 90 (21), 12959–12963.

[72] Hu, L., and Xu, G., 2010, Applications and trends in electrochemiluminescence, Chem. Soc. Rev., 39 (8), 3275–3304.

[73] BioVeris Corporation, M-SERIES® 384 Analyzer, https://www.selectscience.net/products/m-series-384-analyzer/?prodid=20713#tab-2, accessed on June 11, 2021.

[74] Shah, H.P., Hall, L.O., Powell, M.J., and Massey, R.J., 2005, Particle based electrochemiluminescent assays, US Patent No. 6881536B1, US Patent and Trademark Office, Washington DC, United States.

[75] Qin, J., 2014, Electrochemiluminescence immunoassay method, US Patent No. 20140072963A1, US Patent and Trademark Office, Washington DC, United States.

[76] Kumar, S.M., Otten, J.M., Davis, C.Q., and Biebuyck, H., 2003, Electrochemiluminescence flow cell and flow cell components, CA Patent No. 2493905A1, Canadian Intellectual Property Office (CIPO), Quebec, Canada.

[77] Li, Z., Yang, H., Sun, L., Qi, H., Gao, Q., and Zhang, C., 2015, Electrogenerated chemiluminescence biosensors for the detection of pathogenic bacteria using antimicrobial peptides as capture/signal probes, Sens. Actuators, B, 210, 468–474.

[78] Huang, Z.J., Han, W.D., Wu, Y.H., Hu, X.G., Yuan, Y.N., Chen, W., Peng, H.P., Liu, A.L., and Lin, X.H., 2017, Magnetic electrochemiluminescent immunoassay with quantum dots label for highly efficient detection of the tumor marker α-fetoprotein, J. Electroanal. Chem., 785, 8–13.

[79] Wang, J., Guo, X., Li, H., Jin, Y., Chen, L., and Kang, Q., 2017, A signal-on electrochemiluminescence immunosensor for detecting alpha fetoprotein using gold nanoparticle-graphite-like carbon nitride nanocomposite as signal probe, Int. J. Electrochem. Sci., 12, 9784–9797.

[80] Fang, Q., Lin, Z., Lu, F., Chen, Y., Huang, X., and Gao, W., 2019, A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator, Electrochim. Acta, 302, 207–215.

[81] Rayavarapu, R.G., Petersen, W., Ungureanu, C., Post, J.N., van Leeuwen, T.G., and Manohar, S., 2007, Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques, Int. J. Biomed. Imaging, 2007, 029817.

[82] Wang, C., Zhu, W., Yan, T., Yang, L., Kuang, X., Du, B., Pang, X., and Wei, Q., 2018, Novel electrochemiluminescent platform based on gold nanoparticles functionalized Ti doped BiOBr for ultrasensitive immunosensing of NT-proBNP, Sens. Actuators, B, 277, 401–407.

[83] Shao, K., Wang, J., Jiang, X., Shao, F., Li, T., Ye, S., Chen, L., and Han, H., 2014, Stretch–stowage–growth strategy to fabricate tunable triply-amplified electrochemiluminescence immunosensor for ultrasensitive detection of pseudorabies virus antibody, Anal. Chem., 86 (12), 5749–5757.

[84] Yang, H., Wang, Y., Qi, H., Gao, Q., and Zhang, C., 2012, Electrogenerated chemiluminescence biosensor incorporating ruthenium complex-labelled Concanavalin A as a probe for the detection of Escherichia coli, Biosens. Bioelectron., 35 (1), 376–381.

[85] Lv, X., Li, Y., Yan, T., Pang, X., Hu, L., Du, B., and Wei, Q., 2015, An electrochemiluminescent immunosensor based on CdS-Fe3O4 nanocomposite electrodes for the detection of Ochratoxin A, New J. Chem., 39 (6), 4259–4264.

[86] Wang, C., Jiang, T., Zhao, K., Deng, A., and Li, J., 2019, A novel electrochemiluminescent immunoassay for diclofenac using conductive polymer functionalized graphene oxide as labels and gold nanorods as signal enhancers, Talanta, 193, 184–191.

[87] Ai, Y., Li, X., Zhang, L., Zhong, W., and Wang, J., 2018, Highly sensitive electrochemiluminescent immunoassay for neuron-specific enolase amplified by single-walled carbon nanohorns and enzymatic biocatalytic precipitation, J. Electroanal. Chem., 818, 257–264.

[88] Dong, T., Hu, L., Zhao, K., Deng, A., and Li, J., 2016, Multiple signal amplified electrochemiluminescent immunoassay for brombuterol detection using gold nanoparticles and polyamidoamine dendrimers-silver nanoribbon, Anal. Chim. Acta, 945, 85–94.

[89] Wang, C., Hu, L., Zhao, K., Deng, A., and Li, J., 2018, Multiple signal amplification electrochemiluminescent immunoassay for Sudan I using gold nanorods functionalized graphene oxide and palladium/aurum core-shell nanocrystallines as labels, Electrochim. Acta, 278, 352–362.

[90] Liu, X., Fang, C., Yan, J., Li, H., and Tu, Y., 2018, A sensitive electrochemiluminescent biosensor based on AuNP-functionalized ITO for a label-free immunoassay of C-peptide, Bioelectrochemistry, 123, 211–218.

[91] Zhu, Q., Liu, H., Zhang, J., Wu, K., Deng, A., and Li, J., 2017, Ultrasensitive QDs based electrochemiluminescent immunosensor for detecting ractopamine using AuNPs and Au nanoparticles@PDDA-graphene as amplifier, Sensors Actuators, B Chem., 243, 121–129.

[92] Xu, G., Zhang, S., Zhang, Q., Gong, L., Dai, H., and Lin, Y., 2016, Magnetic functionalized electrospun nanofibers for magnetically controlled ultrasensitive label-free electrochemiluminescent immune detection of aflatoxin B1, Sens. Actuators, B, 222, 707–713.

[93] Zhao, Y., Li, L., Hu, L., Zhang, Y., Wu, D., Ma, H., and Wei, Q., 2019, An electrochemiluminescence immunosensor for the N-terminal brain natriuretic peptide based on the high quenching ability of polydopamine, Microchim. Acta, 186 (9), 606.

[94] Tang, M., Zhou, Z., Shangguan, L., Zhao, F., and Liu, S., 2018, Electrochemiluminescent detection of cardiac troponin I by using soybean peroxidase labeled-antibody as signal amplifier, Talanta, 180, 47–53.

[95] Zhang, J.J., Kang, T.F., Hao, Y.C., Lu, L.P., and Cheng, S.Y., 2015, Electrochemiluminescent immunosensor based on CdS quantum dots for ultrasensitive detection of microcystin-LR, Sens. Actuators, B, 214, 117–123.

[96] Zhang, X., Zhang, B., Miao, W., and Zou, G., 2016, Molecular-counting-free and electrochemiluminescent single-molecule immunoassay with dual-stabilizers-capped CdSe nanocrystals as labels, Anal. Chem., 88 (10), 5482–5488.

[97] Gao, H., Wen, L., Wu, Y., Yan, X., Li, J., Li, X., Fu, Z., and Wu, G., 2018, Sensitive and facile electrochemiluminescent immunoassay for detecting genetically modified rapeseed based on novel carbon nanoparticles, J. Agric. Food Chem., 66 (20), 5247–5253.

[98] Zhang, Y., Li, L., Yang, H., Ding, Y.N., Su, M., Zhu, J., Yan, M., Yu, J., and Song, X., 2013, Gold-silver nanocomposite-functionalized graphene sensing platform for an electrochemiluminescent immunoassay of a tumor marker, RSC Adv., 3 (34), 14701–14709.

[99] Liao, N., Zhuo, Y., Chai, Y., Xiang, Y., Cao, Y., Yuan, R., and Han, J., 2012, Amplified electrochemiluminescent immunosensing using apoferritin-templated poly(ethylenimine) nanoparticles as co-reactant, Chem. Commun., 48 (61), 7610–7612.

[100] Sardesai, N., Pan, S., and Rusling, J., 2009, Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)3]2+-doped silica nanoparticles, Chem. Commun., 33, 4968–4970.

DOI: https://doi.org/10.22146/ijc.64596

Article Metrics

Abstract views : 1359 | views : 1107

Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.