Characterization of Bottom Ash Waste Adsorbent from Palm Oil Plant Boiler Burning Process to Adsorb Carbon Dioxide in a Fixed Bed Column

https://doi.org/10.22146/ijc.66509

Novi Sylvia(1), Fitriani Fitriani(2), Rozanna Dewi(3), Rizka Mulyawan(4), Abrar Muslim(5), Husni Husin(6), Yunardi Yunardi(7*), Mutia Reza(8)

(1) Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia Department of Chemical Engineering, Malikussaleh University, Lhokseumawe, 24351, Indonesia
(2) Department of Chemical Engineering, Malikussaleh University, Lhokseumawe, 24351, Indonesia
(3) Department of Chemical Engineering, Malikussaleh University, Lhokseumawe, 24351, Indonesia
(4) Department of Chemical Engineering, Malikussaleh University, Lhokseumawe, 24351, Indonesia
(5) Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(6) Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(7) Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(8) Department of Chemical Engineering, Institut Teknologi Kalimantan, Indonesia
(*) Corresponding Author

Abstract


Palm oil bottom ash utilization from mill boilers as CO2 adsorbent has been in use for few years. This study aims to examine adsorbent characteristics and capabilities of bottom ash produced from boiler combustion in palm oil industry for CO2 adsorption before and after utilization, such as compound functional group using the Fourier Transform Infra-Red (FT-IR) spectrophotometer, adsorbent morphology through Scanning Electron Microscopy (SEM), and compound amount using Energy Dispersive X-Ray Spectroscopy (EDX). The CO2 adsorption was carried out in fixed-bed column. Process variables consist of volumetric flow rate, contact time and bed height. Results showed that SiO2 compounds in the heterogeneous form with average particle size of 1073 nm, as supported by FT-IR spectrum finding indicating SiO2 signal at wavelength of 958–954 cm–1. Additionally, EDX analysis showed Silica and Oxygen content of 11.88% and 36.90%, resulting 70% CO2 adsorption capacity of 0.350 mg/g at discharge of 5 L/min, contact time of 40 min, and bed height of 12 cm. Langmuir isotherm model was obtained with R2 of 0.998, qm of 1.588, and kL of 0.144. Meanwhile, the kinetic model followed a simple first-order prototypical with R2 of 0.952, C02 of 0.260, and k1 of 0.006.

Keywords


adsorption; adsorbent; bottom ash; CO2 gas; fixed-bed column

Full Text:

Full Text PDF


References

[1] Abunowara, M., Bustam, M.A., Sufian, S., and Eldemerdash, U., 2016, Description of carbon dioxide adsorption and desorption onto malaysian coals under subcritical condition, Procedia Eng., 148, 600–608.

[2] Silva, J.A.C., Schumann, K., and Rodrigues., A.E., 2012, Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite, Microporous Mesoporous Mater., 158, 219–228.

[3] Kongnoo, A., Tontisirin, S., Worathanakul, P., and Phalakornkule, C., 2017, Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash, Fuel, 193, 385–394.

[4] Chen, S.J., Zhu, M., Fu, Y., Huang, Y.X., Tao, Z.C., and Li, W.L., 2017, Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas, Appl. Energy, 191, 87–98.

[5] Hauchhum, L., and Mahanta, P., 2014, Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed, Int. J. Energy Environ. Eng., 5 (4), 349–356.

[6] Girimonte, R., Formisani, B., and Testa, F., 2017, Adsorption of CO2 on a confined fluidized bed of pelletized 13X zeolite, Powder Technol., 311, 9–17.

[7] Campo, M.C., Ribeiro, A.M., Ferreira, A.F.P., Santos, J.C., Lutz, C., Loureiro, J.M., and Rodrigues A.E., 2016, Carbon dioxide removal for methane upgrade by a VSA process using an improved 13X zeolite, Fuel Process. Technol., 143, 185–194.

[8] Ridha, F.N., Manovic, V., Macchi, A., and Anthony, E.J., 2015, CO2 capture at ambient temperature in a fixed bed with CaO-based sorbents, Appl. Energy, 140, 297–303.

[9] Gouveia, L.G.T., Agustini, C.B., Perez-Lopez, O.W., and Gutterres, M., 2020, CO2 adsorption using solids with different surface and acid-base properties, J. Environ. Chem. Eng., 8 (4), 103823.

[10] Regufe, M.J., Ribeiro, A.M., Ferreira, A.F.P., and Rodrigues, A., 2019, “CO2 storage on zeolites and other adsorbents” in Nanoporous Materials for Gas Storage, Green Energy and Technology, Eds. Kaneko, K., and Rodríguez-Reinoso, F., Springer, Singapore, 359–381.

[11] Gil, A., Arrieta, E., Vicente, M.A., and Korili, S.A., 2018, Synthesis and CO2 adsorption properties of hydrotalcite-like compounds prepared from aluminum saline slag wastes, Chem. Eng. J., 334, 1341–1350.

[12] Bezerra, D.P., da Silva, F.W.M., de Moura, P.A.S., Sousa, A.G.S., Vieira, R.S., Rodriguez-Castellon, E., and Azevedo, D.C.S., 2014, CO2 adsorption in amine-grafted zeolite 13X, Appl. Surf. Sci., 314, 314–321.

[13] Bezerra, D.P., Silva, F.W.M., de Moura, P.A.S., Sousa, A.G.S., Vieira, R.S., Rodriguez-Castellon, E., Azevedo, D.C.S., 2014, Adsorption of CO2 on amine grafted activated carbon, Adsorpt. Sci. Technol., 32, 141–151.

[14] Dantas, T.L.P., Luna, F.M.T., Silva, I.J., de Azevedo, D.C.S., Grande, C.A., Rodrigues, A.E., and Moreira, R.F.P.M., 2011, Carbon dioxide–nitrogen separation through adsorption on activated carbon in a fixed bed, Chem. Eng. J., 169 (1-3), 11–19.

[15] Laharto, P.B.F., Anggraini, A.P.K., Fauzany, U.S., Kurniawan, R.Y., and Endang, P.S., 2019, Synthesis of mesoporous silica from bottom ash waste for CH4 adsorption, Mater. Sci. Forum, 964, 130–135.

[16] Liu, Q., He, P., Q, Qian, X., Fei, Z., Zhang, Z., Chen, X., Tang, J., Cui, M., Qiao, X., and Shi, Y., 2017, Enhanced CO2 adsorption performance on hierarchical porous ZSM-5 zeolite, Energy Fuels, 31 (12), 13933–13941.

[17] Lira-Zúñiga, S., Sáez-Navarrete, C., Rodríguez-Córdova, L., Herrera-Zeppelin, L., and Herrera-Urbina, R., 2016, CO2 adsorption on agricultural biomass combustion ashes, Maderas, Cienc. Tecnol., 18 (4), 607–616.

[18] Lee, S.Y., and Park, S.J., 2015, A review on solid adsorbents for carbon dioxide capture, J. Ind. Eng. Chem., 23, 1–11.

[19] Sylvia, N., Mutia, R., Malasari, M., Dewi, R., Bindar, Y., and Yunardi, Y., 2019, A computational fluid dynamic comparative study on CO2 adsorption performance using activated carbon and zeolite in a fixed bed reactor, IOP Conf. Ser.: Mater. Sci. Eng., 536, 012042.

[20] Yoro, K.O., Singo, M., Mulopo, J.L., and Daramola, M.O., 2017, Modelling and experimental study of the CO2 adsorption behaviour of polyaspartamide as an adsorbent during post-combustion CO2 capture, Energy Procedia, 114.

[21] Lakapu, M.M., and Widiastuti, N., 2017, Synthesis of zeolite-X supported on kapok fiber for CO2 capture material: Variation of immersion time during fiber activation, Indones. J. Chem., 17 (3), 471–476.

[22] Haider, M.B., Jha, D., Sivagnanam, B.M., and Kumar, R., 2018, Thermodynamic and kinetic studies of CO2 capture by glycol and amine-based deep eutectic solvents, J. Chem. Eng. Data, 63 (8), 2671–2680.

[23] Ghazali, Z., Yarmo, M.A., Hassan, N.H., Teh, L.P., and Othaman, R., 2020, New green adsorbent for capturing carbon dioxide by choline chloride: Urea‑confined nanoporous silica, Arabian J. Sci. Eng., 45 (6), 4621–4634.

[24] Wardani, A.R.K., and Widiastuti, N., 2016, Synthesis of zeolite-X supported on glasswool for CO2 capture material: Variation of immersion time and NaOH concentration at glasswool activation, Indones. J. Chem., 278, 16 (1), 1–7.

[25] Minzatu, V., Adina, N., Davidescu, C.M., Duda, C.S., Ciopec, M., Duteanu, N., Negrea, P., Seiman, D.D., and Pascu, I., 2018, Arsenic adsorption into the fixed bed column from drinking groundwater, WIT Trans. Ecol. Environ., 228, 101–110.



DOI: https://doi.org/10.22146/ijc.66509

Article Metrics

Abstract views : 3682 | views : 2875


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.