Rotational Barrier and Bond Dissociation Energy and Enthalpy: Computational Study of the Substituent Effects in Para-Substituted Anilines and Phenols
Ali Hussain Yateem(1*)
(1) Department of Chemistry, College of Science, University of Bahrain, P. O. Box 32038, Sakhir, Kingdom of Bahrain
(*) Corresponding Author
Abstract
Keywords
References
[1] Horton, W., Peerannawar, S., Török, B., and Török, M., 2019, Theoretical and experimental analysis of the antioxidant features of substituted phenol and aniline model compounds, Struct. Chem., 30 (1), 23–35.
[2] Biela, M., Pelikánová, B., and Michalík, M., 2019, Antioxidant action of phenols: Revisiting theoretical calculations of their thermodynamics, Acta Chim. Slovaca, 12 (2), 212–217.
[3] Poliak, P., Vagánek, A., Lukeš, V., and Klein, E., 2015, Substitution and torsional effects on the energetics of homolytic N–H bond cleavage in diphenylamines, Polym. Degrad. Stab., 114, 37–44.
[4] Ali, H.M., Abo-Shady, A., Eldeen, H.A.S., Soror, H.A., Shousha, W.G., Abdel-Barry, O.A., and Saleh, A.M., 2013, Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds, Chem. Cent. J., 7 (1), 53.
[5] Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., and Lewandowski, W., 2021, Recent developments in effective antioxidants: The structure and antioxidant properties, Materials, 14(8), 1984.
[6] Khalil, I., Yehye, W.A., Etxeberria, A.E., Alhadi, A.A., Dezfooli, S.M., Julkapli, N.B.M., Basirun, W.J., and Seyfoddin, A., 2020, Nanoantioxidants: Recent trends in antioxidant delivery applications, Antioxidants, 9 (1), 24.
[7] Maraveas, C., Bayer, I.S., and Bartzanas, T., 2021, Recent advances in antioxidant polymers: From sustainable and natural monomers to synthesis and applications, Polymers, 13 (15), 2465.
[8] Vo, Q.V., Nam, P.C., Thong, N.M., Trung, N.T., Phan, C.T.D. and Mechler, A., 2019, Antioxidant motifs in flavonoids: O–H versus C–H bond dissociation, ACS Omega, 4 (5), 8935–8942.
[9] Thong, N.M., Duong, T., Pham, L.T., and Nam, P.C., 2014, Theoretical investigation on the bond dissociation enthalpies of phenolic compounds extracted from Artocarpus altilis using ONIOM(ROB3LYP/6-311++G(2df,2p):PM6) method, Chem. Phys. Lett., 613, 139–145.
[10] Alisi, I.O., Uzairu, A., and Abechi, S.E., 2020, Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: thermodynamics of O–H and N–H bond cleavage, Heliyon, 6 (3), e03683.
[11] Boli, L.S.P., Rusydi, F., Khoirunisa, V., Puspitasari, I., Rachmawati, H., and Dipojono, H.K., 2021, O–H and C–H bond dissociations in non-phenyl and phenyl groups: A DFT study with dispersion and long-range corrections, Theor. Chem. Acc., 140 (7), 94.
[12] Beya, M.M., Netzel, M.E., Sultanbawa, Y., Smyth, H., and Hoffman, L.C., 2021, Plant-based phenolic molecules as natural preservatives in comminuted meats: A review, Antioxidants, 10 (2), 263.
[13] Ali, H.M., and Ali, I.H., 2015, QSAR and mechanisms of radical scavenging activity of phenolic and anilinic compounds using structural, electronic, kinetic, and thermodynamic parameters, Med. Chem. Res., 24 (3), 987–998.
[14] Sharopov, F.S., Wink, M., and Setzer, W.N., 2015, Radical scavenging and antioxidant activities of essential oil components–An experimental and computational investigation, Nat. Prod. Commun., 10 (1), 153–156.
[15] Stepanić, V., Trošelj, K.G., Lučić, B., Marković, Z., and Amić, D., 2013, Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity, Food Chem., 141 (2), 1562–1570.
[16] Saqib, M., Mahmood, A., Akram, R., Khalid, B., Afzal, S., and Kamal, G.M., 2015, Density functional theory for exploring the structural characteristics and their effects on the antioxidant properties, J. Pharm. Appl. Chem., 1 (2), 65–71.
[17] Bendary, E., Francis, R.R., Ali, H.M.G., Sarwat, M.I., and El Hady, S., 2013, Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds, Ann. Agric. Sci., 58 (2), 173–181.
[18] John, P.C.S., Guan, Y., Kim, Y., Kim, S., and Paton, R.S., 2020, Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost, Nat. Commun., 11 (1), 2328.
[19] Galano, A., Muñoz-Rugeles, L., Alvarez-Idaboy, J.R., Bao, J.L., and Truhlar, D.G., 2016, Hydrogen abstraction reactions from phenolic compounds by peroxyl radicals: Multireference character and density functional theory rate constants, J. Phys. Chem. A, 120 (27), 4634–4642.
[20] Liu, M., Zhang, Z., Chen, B., Meng, Q., Zhang, P., Song, J., and Han, B., 2020, Synthesis of thioethers, arenes and arylated benzoxazoles by transformation of the C (aryl)–C bond of aryl alcohols, Chem. Sci., 11 (29), 7634–7640.
[21] Lai, W., Li, C., Chen, H., and Shaik, S., 2012, Hydrogen‐abstraction reactivity patterns from A to Y: The valence bond way, Angew. Chem. Int. Ed., 51 (23), 5556–5578.
[22] Garrett, G.E., Pratt, D.A., and Parent, J.S., 2020, Hydrogen atom abstraction from polyolefins: Experimental and computational studies of model systems, Macromolecules, 53 (8), 2793–2800.
[23] Aliaga, C., Almodovar, I., and Rezende, M.C., 2015, A single theoretical descriptor for the bond-dissociation energy of substituted phenols, J. Mol. Model., 21(1), 12.
[24] Khursan, S.L., 2016, Homodesmotic method of determining the O–H bond dissociation energies in phenols, Kinet. Catal., 57 (2), 159–169.
[25] Denisov, E.T., and Denisova, T.G., 2015, Dissociation energies of NH bonds in aromatic amines, Pet. Chem., 55 (2), 85–103.
[26] Vagánek, A., Rimarčík, J., Ilčin, M., Škorňa, P., Lukeš, V., and Klein, E., 2013, Homolytic N–H bond cleavage in anilines: Energetics and substituent effect, Comput. Theor. Chem., 1014, 60–67.
[27] Klein, E., and Lukeš, V., 2006, Study of gas-phase O–H bond dissociation enthalpies and ionization potentials of substituted phenols–applicability of ab initio and DFT/B3LYP methods, Chem. Phys., 330 (3), 515–525.
[28] Li, Z., and Cheng, J.P., 2003, A detailed investigation of subsitituent effects on N−H bond enthalpies in aniline derivatives and on the stability of corresponding N-centered radicals, J. Org. Chem., 68 (19), 7350–7360.
[29] Pratt, D.A., DiLabio, G.A., Valgimigli, L., Pedulli, G.F., and Ingold, K.U., 2002, Substituent effects on the bond dissociation enthalpies of aromatic amines, J. Am. Chem. Soc., 124 (37), 11085–11092.
[30] Jonsson, M., Lind, J., Merényi, G., and Eriksen, T.E., 1995, N–H bond dissociation energies, reduction potentials and pKas of multisubstituted anilines and aniline radical cations, J. Chem. Soc., Perkin Trans. 2, 1, 61–65.
[31] Bordwell, F.G., Zhang, X.M., and Cheng, J.P., 1993, Bond dissociation energies of the nitrogen-hydrogen bonds in anilines and in the corresponding radical anions. Equilibrium acidities of aniline radical cations, J. Org. Chem., 58 (23), 6410–6416.
[32] Song, K.S., Liu, L., and Guo, Q.X., 2003, Remote Substituent effects on N−X (X = H, F, Cl, CH3, Li) bond dissociation energies in para-substituted anilines, J. Org. Chem., 68 (2), 262–266.
[33] Wu, Y.D., and Lai, D.K.W., 1996, A density functional study of substituent effects on the O−H and O−CH3 bond dissociation energies in phenol and anisole, J. Org. Chem., 61 (22), 7904–7910.
[34] Zhang, H.Y., Sun, YM., and Chen, D.Z., 2001, O–H bond dissociation energies of phenolic compounds are determined by field/inductive effect or resonance effect? A DFT study and its implication, Quant. Struct.-Act. Relat., 20 (2), 148–152.
[35] Yateem, A.H., 2020, Rotational barrier and electron-withdrawing substituent effects: Theoretical study of π-conjugation in para-substituted anilines, Mediterr. J. Chem., 10 (4), 319–334.
[36] Yateem, A.H., 2020, Rotational barrier and quantification of electron-donating substituent effects: A computational study of para-substituted benzaldehydes, Croat. Chem. Acta, 93 (2), 85–96.
[37] Yateem, A.H., 2019, Rotational barrier and conjugation: Theoretical study of resonance stabilization of various substituents for the donors NH2 and OCH3 in substituted 1,3-butadienes, Indones. J. Chem., 19 (4), 1055–1065.
[38] Jacobsen, H., and Cavallo, L., 2017, “Directions for Use of Density Functional Theory: A Short Instruction Manual for Chemists” in Handbook of Computational Chemistry, Eds., Leszczynski, J., Kaczmarek-Kedziera, A., Puzyn, T., Papadopoulos, M.G., Reis H., Shukla M.K., Springer, Cham, 225–267.
[39] Mardirossian, N., and Head-Gordon, M., 2017, Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals, Mol. Phys., 115 (19), 2315–2372.
[40] SPARTAN'14, 2014, Wavefunction, Irvine, CA, USA.
[41] Bruno, G., Macetti, G., Lo Presti, L., and Gatti, C., 2020, Spin density topology, Molecules, 25 (15), 3537.
[42] Grozav, A., Porumb, I.D., Găină, L.I., Filip, L., and Hanganu, D., 2017, Cytotoxicity and antioxidant potential of novel 2-(2-((1H-indol-5yl) methylene)-hydrazinyl)-thiazole derivatives, Molecules, 22 (2), 260.
DOI: https://doi.org/10.22146/ijc.68687
Article Metrics
Abstract views : 3007 | views : 1806 | views : 910Copyright (c) 2022 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.